【題目】某校體育教研組研發(fā)了一項新的課外活動項目,為了解該項目受歡迎程度,在某班男女中各隨機(jī)抽取20名學(xué)生進(jìn)行調(diào)研,統(tǒng)計得到如下列聯(lián)表:

附:參考公式及數(shù)據(jù)

1)在喜歡這項課外活動項目的學(xué)生中任選1人,求選到男生的概率;

2)根據(jù)題目要求,完成2×2列聯(lián)表,并判斷是否有95%的把握認(rèn)為喜歡該活動項目與性別有關(guān)?

【答案】1;(2)填表見解析;有95%的把握認(rèn)為喜歡該活動項目與性別有關(guān)”.

【解析】

(1)由題意可知喜歡這項活動的男生有8人,女生有15人,即可根據(jù)古典概型求出答案.

(2)根據(jù)題意完成表格,再將表格中的數(shù)據(jù)代入,將其與比較即可得出結(jié)論.

1)依題意知,喜歡這項活動的男生有8人,女生有15人,

從中選一人有23種選法,其中選到男生有8種,

所求概率為.

2)根據(jù)題意,填寫列聯(lián)表如下:

所以K2≈5.0133.841,

所以:有95%的把握認(rèn)為喜歡該活動項目與性別有關(guān)”.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某單位為了響應(yīng)疫情期間有序復(fù)工復(fù)產(chǎn)的號召,組織從疫區(qū)回來的甲、乙、丙、丁4名員工進(jìn)行核酸檢測,現(xiàn)采用抽簽法決定檢測順序,在員工甲不是第一個檢測,員工乙不是最后一個檢測的條件下,員工丙第一個檢測的概率為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)命題p:實數(shù)x滿足x24ax+3a20a0),命題q:實數(shù)x滿足x25x+60

1)若a1,且pq為真命題,求實數(shù)x的取值范圍;

2)若pq的必要不充分條件,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐P-ABCD中,AB//CD,且

(1)證明:平面PAB⊥平面PAD;

(2)若PA=PD=AB=DC, ,且四棱錐P-ABCD的體積為,求該四棱錐的側(cè)面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知左、右焦點分別為的橢圓過點,且橢圓C關(guān)于直線x=c對稱的圖形過坐標(biāo)原點.

(I)求橢圓C的離心率和標(biāo)準(zhǔn)方程。

(II)圓與橢圓C交于A,B兩點,R為線段AB上任一點,直線交橢圓C于P,Q兩點,若AB為圓的直徑,且直線的斜率大于1,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù)),以坐標(biāo)原點為極點,以軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為,直線與曲線相交于兩點,與軸相交于點.

(1)求直線的普通方程和曲線的直角坐標(biāo)方程;

(2)求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】將4名志愿者分別安排到火車站、輪渡碼頭、機(jī)場工作,要求每一個地方至少安排一名志愿者,其中甲、乙兩名志愿者不安排在同一個地方工作,則不同的安排方法共有

A. 24種B. 30種C. 32種D. 36種

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,將四棱錐S-ABCD的每一個頂點染上一種顏色,并使同一條棱上的兩端異色,如果只有5種色可供使用,則不同的染色方法種數(shù)為(

A.240B.360C.420D.960

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】珠算之父程大位是我國明代著名的數(shù)學(xué)家,他的應(yīng)用巨著《算法統(tǒng)綜》中有一首竹筒容米問題:家有九節(jié)竹一莖,為因盛米不均平,下頭三節(jié)四升五,上梢四節(jié)三升八,唯有中間兩節(jié)竹,要將米數(shù)次第盛,若有先生能算法,也教算得到天明.”((注)四升五:4.5升,次第盛:盛米容積依次相差同一數(shù)量.)用你所學(xué)的數(shù)學(xué)知識求得中間兩節(jié)竹的容積為

A. 2.2B. 2.3

C. 2.4D. 2.5

查看答案和解析>>

同步練習(xí)冊答案