【題目】設(shè)命題p:實數(shù)x滿足x2﹣4ax+3a2<0(a>0),命題q:實數(shù)x滿足x2﹣5x+6<0.
(1)若a=1,且p∧q為真命題,求實數(shù)x的取值范圍;
(2)若p是q的必要不充分條件,求實數(shù)a的取值范圍.
【答案】(1)(2,3)(2)[1,2]
【解析】
(1)根據(jù)p∧q為真命題,所以p真且q真,分別求出命題p為真命題和命題q為真命題時對應(yīng)的x的取值范圍,取交集,即可求出x的取值范圍;
(2)先分別求出命題p為真命題和命題q為真命題時,對應(yīng)的集合,再根據(jù)充分、必要條件與集合之間的包含關(guān)系,即可求出。
(1)當(dāng)a=1時,若命題p為真命題,則不等式x2﹣4ax+3a2<0可化為x2﹣4x+3<0,
解得1<x<3;
若命題q為真命題,則由x2﹣5x+6<0,解得2<x<3.
∵p∧q為真命題,則p真且q真,
∴實數(shù)x的取值范圍是(2,3)
(2)由x2﹣4ax+3a2<0,解得(x﹣3a)(x﹣a)<0,又a>0,∴a<x<3a
設(shè)p:A={x|a<x<3a,a>0},q:B={x|2<x<3}
∵p是q的必要不充分條件,∴BA.
∴,解得1≤a≤2
∴實數(shù)a的取值范圍是[1,2]
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(為常數(shù)),曲線在與軸的交點A處的切線與軸平行.
(1)求的值及函數(shù)的單調(diào)區(qū)間;
(2)若存在不相等的實數(shù)使成立,試比較與的大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)相鄰兩對稱軸間的距離為,若將的圖象先向左平移個單位,再向下平移1個單位,所得的函數(shù)為奇函數(shù).
(1)求的解析式,并求的對稱中心;
(2)若關(guān)于的方程在區(qū)間上有兩個不相等的實根,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)如果對于任意的,恒成立,求實數(shù)的取值范圍;
(III)設(shè)函數(shù), ,過點作函數(shù)的圖象的所有切線,令各切點的橫坐標(biāo)按從小到大構(gòu)成數(shù)列,求數(shù)列的所有項之和的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】中國有個名句“運籌帷幄之中,決勝千里之外”.其中的“籌”原意是指《孫 子算經(jīng)》中記載的算籌,古代是用算籌來進行計算,算籌是將幾寸長的小竹棍擺在平面上進行運算,算籌的擺放形式有縱橫兩種形式,如下表:
表示一個多位數(shù)時,像阿拉伯計數(shù)一樣,把各個數(shù)位的數(shù)碼從左到右排 列,但各位數(shù)碼的籌式需要縱橫相間,個位,百位,萬位用縱式表示,十位,千位,十萬位用橫式表示,以此類推,例如2268用算籌表示就是=||丄|||.執(zhí)行如圖所示程序框 圖,若輸人的x=1, y = 2,則輸出的S用算籌表示為
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,直線l的參數(shù)方程為為參數(shù),以坐標(biāo)原點O為極點,以x軸正半軸為極軸的極坐標(biāo)系中,曲線C的極坐標(biāo)方程為.
求直線l的普通方程及曲線C的直角坐標(biāo)方程;
若直線l與曲線C交于A,B兩點,求線段AB的中點P到坐標(biāo)原點O的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知三棱錐底面的3個頂點在球的同一個大圓上,且為正三角形,為該球面上的點,若三棱錐體積的最大值為,則球的表面積為( )
A. B. C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com