13.已知A,B,P是$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$上不同的三點(diǎn),且A,B連線經(jīng)過(guò)坐標(biāo)原點(diǎn),若直線PA,PB的斜率乘積${k_{PA}}•{k_{PB}}=-\frac{4}{9}$,則的離心率( 。
A.$\frac{{\sqrt{5}}}{2}$B.$\frac{{\sqrt{5}}}{3}$C.$\sqrt{2}$D.$\frac{{\sqrt{15}}}{3}$

分析 由于A,B連線經(jīng)過(guò)坐標(biāo)原點(diǎn),所以A,B一定關(guān)于原點(diǎn)對(duì)稱,利用直線PA,PB的斜率乘積,可尋求幾何量之間的關(guān)系,從而可求離心率.

解答 解:根據(jù)橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$的對(duì)稱性可知A,B關(guān)于原點(diǎn)對(duì)稱,
設(shè)A(x1,y1),B(-x1,-y1),P(x,y),
則$\left\{\begin{array}{l}{\frac{{{x}_{1}}^{2}}{{a}^{2}}+\frac{{{y}_{1}}^{2}}{^{2}}=1}\\{{k}_{PA}•{k}_{PB}=\frac{y-{y}_{1}}{x-{x}_{1}}•\frac{y+{y}_{1}}{x+{x}_{1}}=-\frac{4}{9}}\end{array}\right.$,
∴由$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$和$\frac{{{x}_{1}}^{2}}{{a}^{2}}+\frac{{{y}_{1}}^{2}}{^{2}}$=1兩式相減,得:$\frac{{y}^{2}-{{y}_{1}}^{2}}{{x}^{2}-{{x}_{1}}^{2}}$=-$\frac{^{2}}{{a}^{2}}$,
∴$\frac{^{2}}{{a}^{2}}=\frac{4}{9}$,∴$\frac{a}=\frac{2}{3}$,
設(shè)a=3k,則b=2k,c=$\sqrt{9{k}^{2}-4{k}^{2}}=\sqrt{5}k$,
∴e=$\frac{c}{a}=\frac{\sqrt{5}}{3}$.
故選:B.

點(diǎn)評(píng) 本題主要考查雙曲線的幾何性質(zhì),考查點(diǎn)差法,關(guān)鍵是設(shè)點(diǎn)代入化簡(jiǎn),應(yīng)注意雙曲線幾何量之間的關(guān)系.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.在△ABC中,角A、B、C的對(duì)邊分別為a、b、c.已知c=b(1+2cosA).
(1)求證:A=2B;
(2)若a=$\frac{\sqrt{2}+\sqrt{6}}{2}$,B=$\frac{π}{12}$,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知離心率為$\frac{\sqrt{6}}{3}$的橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的一個(gè)焦點(diǎn)為F,過(guò)F且與x軸垂直的直線與橢圓交于A、B兩點(diǎn),|AB|=$\frac{2\sqrt{3}}{3}$.
(1)求此橢圓的方程;
(2)已知直線y=kx+2與橢圓交于C、D兩點(diǎn),若以線段CD為直徑的圓過(guò)點(diǎn)E(-1,0),求k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.已知橢圓$\frac{{x}^{2}}{36}$+$\frac{{y}^{2}}{16}$=1上點(diǎn)P到某一個(gè)焦點(diǎn)的距離為3,則點(diǎn)P到另一個(gè)焦點(diǎn)的距離為(  )
A.3B.5C.7D.9

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知F1,F(xiàn)2分別為橢圓$\frac{{x}^{2}}{2}$+y2=1的左、右焦點(diǎn),過(guò)F1的直線l與橢圓交于不同的兩點(diǎn)A、B,連接AF2和BF2
(Ⅰ)求△ABF2的周長(zhǎng);
(Ⅱ)若AF2⊥BF2,求△ABF2的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)過(guò)點(diǎn)$(\sqrt{2},\;\;0)$和(0,1),其右焦點(diǎn)為F.
(Ⅰ)求橢圓C的方程;
(Ⅱ)過(guò)點(diǎn)F的直線l交橢圓C于A,B兩點(diǎn),若$\overrightarrow{AF}=3\overrightarrow{FB}$,求|$\overrightarrow{OA}+\overrightarrow{OB}$|的值(其中O為坐標(biāo)原點(diǎn)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.如圖,已知橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0),A、B分別其左右頂點(diǎn),直線AE交其右準(zhǔn)線CE于點(diǎn)E,交橢圓于點(diǎn)D($\frac{1}{e}$,3),其中e為橢圓的離心率,B為線段OC的中點(diǎn).圓C是以C點(diǎn)為圓心,CB長(zhǎng)為半徑的圓,P為直線AE上任意一點(diǎn),過(guò)P向圓C作切線,切點(diǎn)分別為M、N.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)證明:線段MN的中點(diǎn)在一個(gè)定圓上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知橢圓C:$\frac{y^2}{a^2}+\frac{x^2}{b^2}$=1(a>b>0)的離心率為$\frac{{\sqrt{2}}}{2}$,且過(guò)定點(diǎn)M(1,$\frac{{\sqrt{2}}}{2}$).
(1)求橢圓C的方程;
(2)已知直線l:y=kx-$\frac{1}{3}$(k∈R)與橢圓C交于A、B兩點(diǎn),試問(wèn)在y軸上是否存在定點(diǎn)P,使得以弦AB為直徑的圓恒過(guò)P點(diǎn)?若存在,求出P點(diǎn)的坐標(biāo)和△PAB的面積的最大值,若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.已知實(shí)數(shù)a,b滿足a>b,且ab=2,則$\frac{{a}^{2}+^{2}+1}{a-b}$的最小值是$2\sqrt{5}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案