【題目】已知函數(shù) 的零點(diǎn), 圖像的對(duì)稱軸,且 單調(diào),則 的最大值為( 。
A.11
B.9
C.7
D.5

【答案】B
【解析】解:∵x=﹣ 為f(x)的零點(diǎn),x= 為y=f(x)圖象的對(duì)稱軸, ∴ ,即 ,(n∈N)
即ω=2n+1,(n∈N)
即ω為正奇數(shù),
∵f(x)在( )則 = ,即T= ,解得:ω≤12,當(dāng)ω=11時(shí),﹣ +φ=kπ,k∈Z,∵|φ|≤ ,∴φ=﹣ ,此時(shí)f(x)在( )不單調(diào),不滿足題意;當(dāng)ω=9時(shí),﹣ +φ=kπ,k∈Z,∵|φ|≤ ,∴φ= ,此時(shí)f(x)在( , )單調(diào),滿足題意;
故ω的最大值為9,
故選:B.
【考點(diǎn)精析】關(guān)于本題考查的正弦函數(shù)的對(duì)稱性,需要了解正弦函數(shù)的對(duì)稱性:對(duì)稱中心;對(duì)稱軸才能得出正確答案.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=(x﹣2)ex+a(x﹣1)2
(1)討論f(x)的單調(diào)性;
(2)若f(x)有兩個(gè)零點(diǎn),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}中,a1=3,an1+2(nN*).

()計(jì)算a2,a3,a4的值;

()根據(jù)計(jì)算結(jié)果猜想{an}的通項(xiàng)公式,并用數(shù)學(xué)歸納法加以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)xax2b·ln x,曲線yf(x)P(1,0),且在P點(diǎn)處的切線斜率為2.

(1)a,b的值;

(2)證明:f(x)≤2x2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系內(nèi)從點(diǎn)P1(0,0)作x軸的垂線交曲線y=ex于點(diǎn)Q1(0,1),曲線在Q1點(diǎn)處的切線與x軸交于點(diǎn)P2.再從P2x軸的垂線交曲線于點(diǎn)Q2,依次重復(fù)上述過程得到一系列點(diǎn):P1,Q1;P2,Q2;…;Pn,Qn,記點(diǎn)的坐標(biāo)為(,0)(k=1,2,…,n).

(1)試求的關(guān)系(k=2,…,n);

(2)求|P1Q1|+|P2Q2|+|P3Q3|+…+|PnQn|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)求fx)的最小值;

(2)若方程x2+1=-x3+2x2+mxx>0)有兩個(gè)正根,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在以A,B,C,D,E,F(xiàn)為頂點(diǎn)的五面體中,面ABEF為正方形,AF=2FD,∠AFD=90°,且二面角D﹣AF﹣E與二面角C﹣BE﹣F都是60°.

(1)證明平面ABEF⊥平面EFDC;
(2)求二面角E﹣BC﹣A的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】中,角對(duì)的邊分別為,已知.

)若,求的取值范圍;

)若,求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,角A,B,C所對(duì)的邊分別是a,b,c,且
(1)證明:sinAsinB=sinC;
(2)若 ,求tanB.

查看答案和解析>>

同步練習(xí)冊(cè)答案