17.設(shè){an}是公比為q的等比數(shù)列,|q|>1,令bn=an+1(n=1,2,…),若數(shù)列{bn}有連續(xù)四項(xiàng)在集合{-53,-23,19,37,82}中,則8q等于( 。
A.9B.-12C.12D.-9

分析 bn=an+1(n=1,2,…),數(shù)列{bn}有連續(xù)四項(xiàng)在集合{-53,-23,19,37,82}中,可得:等比數(shù)列{an}有連續(xù)四項(xiàng)在集合{-54,-24,18,36,81}中,即可得出連續(xù)四項(xiàng)分別為:-24,36,-54,81.

解答 解:∵bn=an+1(n=1,2,…),數(shù)列{bn}有連續(xù)四項(xiàng)在集合{-53,-23,19,37,82}中,
∴等比數(shù)列{an}有連續(xù)四項(xiàng)在集合{-54,-24,18,36,81}中,|q|>1.
∴連續(xù)四項(xiàng)分別為:-24,36,-54,81,其公比q=$\frac{36}{-24}$=$\frac{-54}{36}$=$\frac{81}{-54}$=$-\frac{3}{2}$,
∴8q=-12.
故選:B.

點(diǎn)評(píng) 本題考查了遞推關(guān)系、等比數(shù)列的通項(xiàng)公式,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.直線x+7y-5=0分圓x2+y2=1所成的兩部分弧長之差的絕對(duì)值為π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.對(duì)于任意正整數(shù)n,猜想2n-1與(n+1)2的大小關(guān)系,并給出證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.在平面直角坐標(biāo)系xOy中,平面區(qū)域W由滿足x2+y2≤5的點(diǎn)的(x,y)構(gòu)成.
(Ⅰ)若x∈Z,y∈Z,在W中任取點(diǎn)M(x,y),求點(diǎn)M位于第四象限的概率;
(Ⅱ)若x,y∈R,在W中任取點(diǎn)M(x,y),求y+x>$\frac{\sqrt{10}}{2}$的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.在△ABC中,內(nèi)角A,B,C所對(duì)的邊分別為a,b,c,已知△ABC的面積為3$\sqrt{15}$,b-c=2,cosA=-$\frac{1}{4}$,則a的值為( 。
A.64B.$4\sqrt{15}$C.8D.4$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.設(shè)函數(shù)f(x)=2(n-1)x在全體實(shí)數(shù)范圍內(nèi)為減函數(shù),求n的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.“有些指數(shù)函數(shù)是減函數(shù),y=2x是指數(shù)函數(shù),所以y=2x是減函數(shù)”上述推理( 。
A.大前提錯(cuò)誤B.小前提錯(cuò)誤C.推理形式錯(cuò)誤D.以上都不是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)f(x)=2sin(2x+$\frac{π}{3}$).
(1)求函數(shù)f(x)的周期;
(2)求函數(shù)f(x)的單調(diào)遞增區(qū)間,單調(diào)遞減區(qū)間;
(3)若x∈[0,$\frac{π}{2}$],求f(x)的值域;
(4)求f(x)的對(duì)稱軸方程,及對(duì)稱中心.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.四位男生和一位女生站成一排,則女生站在中間的排法共有24種.(用數(shù)字作答)

查看答案和解析>>

同步練習(xí)冊(cè)答案