13.給出下列5種說法:
①標(biāo)準(zhǔn)差越小,樣本數(shù)據(jù)的波動(dòng)也越小;
②回歸分析研究的是兩個(gè)相關(guān)事件的獨(dú)立性;
③在回歸分析中,預(yù)報(bào)變量是由解釋變量和隨機(jī)誤差共同確定的;
④相關(guān)指數(shù)R2是用來刻畫回歸效果的,R2的值越大,說明回歸模型的擬合效果越好.
⑤對(duì)分類變量X與Y的隨機(jī)變量K2的觀測(cè)值k來說,k越小,判斷“X與Y有關(guān)系”的把握越。
其中說法正確的是①③④⑤(請(qǐng)將正確說法的序號(hào)寫在橫線上).

分析 ①根據(jù)標(biāo)準(zhǔn)差的概念判斷即可;
②③根據(jù)回歸分析的概念可判斷;
④根據(jù)相關(guān)指數(shù)R2是的概念判斷;
⑤根據(jù)K2的計(jì)算公式可判斷.

解答 解:①標(biāo)準(zhǔn)差越小,方差越小,樣本越穩(wěn)定,故樣本數(shù)據(jù)的波動(dòng)也越小,故正確;
②回歸分析研究的是,兩種或兩種以上變量間相互依賴的定量關(guān)系的一種統(tǒng)計(jì)分析方法,而非獨(dú)立性,故錯(cuò)誤;
③在回歸分析中,預(yù)報(bào)變量y是由解釋變量x和隨機(jī)誤差共同確定的,故正確;
④相關(guān)指數(shù)R2是用來刻畫回歸效果的,R2表示解釋變量對(duì)預(yù)報(bào)變量的貢獻(xiàn)率,R2越接近于1,表示解釋變量和預(yù)報(bào)變量的線性相關(guān)關(guān)系越強(qiáng),越趨近0,關(guān)系越弱,故R2的值越大,說明回歸模型的擬合效果越好,故正確.
⑤由K2的計(jì)算公式可知,對(duì)分類變量X與Y的隨機(jī)變量K2的觀測(cè)值k來說,k越小,判斷“X與Y有關(guān)系”的把握越小.
故答案為①③④⑤.

點(diǎn)評(píng) 考查了回歸方程,相關(guān)指數(shù),隨機(jī)變量K2的概念,屬于基礎(chǔ)題型,應(yīng)理解掌握.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知函數(shù)f(x)=x2-2lnx
(Ⅰ) 求函數(shù)f(x)的單調(diào)遞減區(qū)間;
(Ⅱ)若對(duì)任意x∈(0,+∞),不等式f(x)>x(x+a)恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.若關(guān)于x的不等式4x-2x+1-a≤0在[1,2]上恒成立,則實(shí)數(shù)a的取值范圍為a≥8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.在△ABC中,a、b、c分別是A、B、C的對(duì)邊,已知2cos$\frac{C}{2}$-sin$\frac{C}{2}$+1=0.
( I)求sinC的值;
( II)若a2+b2=4(a+b)-8,求c的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知A、B是單位圓(O為圓心)上的兩個(gè)定點(diǎn),且∠AOB=30°,若C為該圓上的動(dòng)點(diǎn),且$\overrightarrow{OC}$=x$\overrightarrow{OA}$+y$\overrightarrow{OB}$(x,y∈R),則xy的最大值為2-$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.為了解某地區(qū)觀眾對(duì)大型綜藝活動(dòng)《中國好聲音》的收視情況,隨機(jī)抽取了100名觀眾進(jìn)行調(diào)查,其中女性有55名.下面是根據(jù)調(diào)查結(jié)果繪制的觀眾收看該節(jié)目的場(chǎng)數(shù)與所對(duì)應(yīng)的人數(shù)表:
場(chǎng)數(shù)91011121314
人數(shù)10182225205
將收看該節(jié)目場(chǎng)次不低于13場(chǎng)的觀眾稱為“歌迷”,已知“歌迷”中有10名女性.
根據(jù)已知條件完成下面的2×2列聯(lián)表,并據(jù)此資料判斷我們能否有95%的把握認(rèn)為“歌迷”與性別有關(guān)?
非歌迷歌迷合計(jì)
合計(jì)
附:
P(K2≥k00.250.150.100.050.0250.0100.0050.001
k01.3232.0722.7063.8415.0246.6357.87910.828
${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d為樣本容量.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.若f(x)=$\frac{x}{{{{log}_{\frac{1}{2}}}(2x-1)}}$,則f(x)的定義域?yàn)椋ā 。?table class="qanwser">A.$(\frac{1}{2},1)$B.$(\frac{1}{2},+∞)$C.$(\frac{1}{2},1)∪(1,+∞)$D.$(\frac{1}{2},2)$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.圓心為(1,-1),半徑為2的圓的標(biāo)準(zhǔn)方程為(x-1)2+(y+1)2=4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.若{1,a,$\frac{a}$}={0,a2,a+b},則a2009+b2009的值為( 。
A.0B.1C.-1D.1或-1

查看答案和解析>>

同步練習(xí)冊(cè)答案