已知,記點P的軌跡為E.
(1)求軌跡E的方程;
(2)設直線l過點F2且與軌跡E交于P、Q兩點,若無論直線l繞點F2怎樣轉動,在x軸上總存在定點,使恒成立,求實數(shù)m的值.

解:(1)由知,點P的軌跡E是以F1、F2為焦點的雙曲線右支,由,故軌跡E的方程為 (4分)
(2)當直線l的斜率存在時,設直線方程為,與雙曲線方程聯(lián)立消y得,

解得k2 >3


 

 
,
故得對任意的
恒成立,

∴當m =-1時,MP⊥MQ.
當直線l的斜率不存在時,由知結論也成立,
綜上,當m =-1時,MP⊥MQ.                        (11分)

解析

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

(本小題12分)
已知橢圓,斜率為的直線交橢圓兩點,且點在直線的上方,
(1)求直線軸交點的橫坐標的取值范圍;
(2)證明:的內切圓的圓心在一條直線上.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

求過點,且與橢圓有相同焦點的橢圓的標準方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知橢圓的長軸長為2a,焦點是F1(-,0)、F2(,0),點F1到直線x=-的距離為,過點F2且傾斜角為銳角的直線l與橢圓交于AB兩點,使得|F2B|=3|F2A|.
(1)求橢圓的方程;
(2)求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

21.(本小題滿分14分)
已知直線過拋物線的焦點且與拋物線相交于兩點,自向準線作垂線,垂足分別為 
(1)求拋物線的方程;
(2)證明:無論取何實數(shù)時,都是定值;
(3)記的面積分別為,試判斷是否成立,并證明你的結論.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(12分) 在直角坐標系中,點到點,的距離之和是,點的軌跡是,直線與軌跡交于不同的兩點.⑴求軌跡的方程;⑵是否存在常數(shù),?若存在,求出的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)已知橢圓的方程為,雙曲線的左、右焦
點分別是的左、右頂點,而的左、右頂點分別是的左、右焦點.
(1)求雙曲線的方程;                                             
(2)若直線與雙曲線C2恒有兩個不同的交點A和B,求的范圍。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知雙曲線  
(1)求以為中點的弦所在的直線的方程
(2)求過的弦的中點的軌跡方程

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:單選題

在極坐標系中,圓ρ=-2sin θ的圓心的極坐標是(  )

A.B.C.(1,0) D.(1,π)

查看答案和解析>>

同步練習冊答案