【題目】甲、乙、丙三位同學在一項集訓中的40次測試分數(shù)都在[50,100]內(nèi),將他們的測試分數(shù)分別繪制成頻率分布直方圖,如圖所示,記甲、乙、丙的分數(shù)標準差分別為s1,s2s3,則它們的大小關系為( )

A.s1s2s3B.s1s3s2

C.s3s1s2D.s3s2s1

【答案】B

【解析】

根據(jù)三個頻率分布直方圖,結(jié)合方差的定義,對三組數(shù)據(jù)的方差作出大小判斷,即可求解.

根據(jù)給定的三個頻率分布直方圖知:

第一組數(shù)據(jù)的兩端數(shù)字較多,絕大部分數(shù)字都處在兩端數(shù)據(jù)偏離平均數(shù)遠,最分散,其方差最大;

第二組數(shù)據(jù)絕大部分數(shù)字都在平均數(shù)左右,數(shù)據(jù)最集中,其方差最。

第三組數(shù)據(jù)是單峰的每個小矩形的差別較小,數(shù)字分布均勻,數(shù)據(jù)步入第一組偏離平均數(shù)答,方差比第一組數(shù)據(jù)中的方差小,比第二組數(shù)據(jù)方差大;

綜上可得.

故選:B.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知,點軸上,點軸上,且,,當點軸上運動時,動點的軌跡為曲線.過軸上一點的直線交曲線兩點.

1)求曲線的軌跡方程;

2)證明:存在唯一的一點,使得為常數(shù),并確定點的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】過去五年,我國的扶貧工作進入了“精準扶貧”階段.目前“精準扶貧”覆蓋了全部貧困人口,東部幫西部,全國一盤棋的扶貧格局逐漸形成.2020年底全國830個貧困縣都將脫貧摘帽,最后4335萬貧困人口將全部脫貧,這將超過全球其他國家過去30年脫貧人口總和.2020年是我國打贏脫貧攻堅戰(zhàn)收官之年,越是到關鍵時刻,更應該強調(diào)“精準”.為落實“精準扶貧”政策,某扶貧小組,為一“對點幫扶”農(nóng)戶引種了一種新的經(jīng)濟農(nóng)作物,并指導該農(nóng)戶于2020年初開始種植.已知該經(jīng)濟農(nóng)作物每年每畝的種植成本為1000元,根據(jù)前期各方面調(diào)查發(fā)現(xiàn),該經(jīng)濟農(nóng)作物的市場價格和畝產(chǎn)量均具有隨機性,且兩者互不影響,其具體情況如下表:

該經(jīng)濟農(nóng)作物畝產(chǎn)量(kg)

該經(jīng)濟農(nóng)作物市場價格(/kg)

概率

概率

1)設2020年該農(nóng)戶種植該經(jīng)濟農(nóng)作物一畝的純收入為X元,求X的分布列;

2)若該農(nóng)戶從2020年開始,連續(xù)三年種植該經(jīng)濟農(nóng)作物,假設三年內(nèi)各方面條件基本不變,求這三年中該農(nóng)戶種植該經(jīng)濟農(nóng)作物一畝至少有兩年的純收入不少于16000元的概率;

32020年全國脫貧標準約為人均純收入4000.假設該農(nóng)戶是一個四口之家,且該農(nóng)戶在2020年的家庭所有支出與其他收入正好相抵,能否憑這一畝經(jīng)濟農(nóng)作物的純收入,預測該農(nóng)戶在2020年底可以脫貧?并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知四棱錐,底面為正方形,且底面,的平面與側(cè)面的交線為且滿足表示的面積.

1)證明: 平面;

(2)當時,求點到平面的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖:某快遞小哥從A地出發(fā),沿小路以平均時速20公里/小時,送快件到C處,已知(公里),,是等腰三角形,.

1)試問,快遞小哥能否在50分鐘內(nèi)將快件送到C處?

2)快遞小哥出發(fā)15分鐘后,快遞公司發(fā)現(xiàn)快件有重大問題,由于通訊不暢,公司只能派車沿大路追趕,若汽車平均時速60公里/小時,問,汽車能否先到達C處?

參考值:,, .

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),其中kR.

1)當時,求函數(shù)的單調(diào)區(qū)間;

2)當k∈[1,2]時,求函數(shù)在[0k]上的最大值的表達式,并求的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,為正方形,且平面平面,點為棱的中點.

1)在棱上是否存在一點,使得平面?并說明理由;

2)若,求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在棱長為2的正方體中,分別是棱的中點,是底面內(nèi)一動點,若直線與平面不存在公共點,以下說法正確的個數(shù)是(

①三棱錐的體積為定值;

的面積的最小值為

平面;

④經(jīng)過三點的截面把正方體分成體積相等的兩部分.

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在多邊形中(圖1).四邊形為長方形,為正三角形,,,現(xiàn)以為折痕將折起,使點在平面內(nèi)的射影恰好是的中點(圖2).

1)證明:平面

2)若點在線段上,且,求二面角的余弦值.

查看答案和解析>>

同步練習冊答案