精英家教網 > 高中數學 > 題目詳情

【題目】現從某班的一次期末考試中,隨機的抽取了七位同學的數學(滿分150分)、物理(滿分110分)成績如下表所示,數學、物理成績分別用特征量表示,

特征量

1

2

3

4

5

6

7

t

101

124

119

106

122

118

115

y

74

83

87

75

85

87

83

關于t的回歸方程;

(2)利用(1)中的回歸方程,分析數學成績的變化對物理成績的影響,并估計該班某學生數學成績130分時,他的物理成績(精確到個位).

附:回歸方程 中斜率和截距的最小二乘估計公式分別為:

【答案】(1)(2)該班某學生數學成績130分時,他的物理成績估計為90分

【解析】試題分析:

(1)由題意求得,則.

(2)(1)的結論可知隨著數學成績的提高,物理成績會穩(wěn)步增長,且該班某學生數學成績130分時,他的物理成績估計為90分

試題解析:

解:(1)

設回歸方程為,代人公式,經計算得

, 關于的回歸方程為

,隨著數學成績的提高,物理成績會穩(wěn)步增長

時,

所以,該班某學生數學成績130分時,他的物理成績估計為90分

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】某班主任對全班50名學生的學習積極性和對待班級工作的態(tài)度進行了調查,統計數據如下表所示:

積極參加班級工作

不太主動參加班級工作

合計

學習積極性高

18

7

25

學習積極性一般

6

19

25

合計

24

26

50

(1)如果隨機抽查這個班的一名學生,那么抽到積極參加班級工作的學生的概率是多少?抽到不太主動參加班級工作且學習積極性一般的學生的概率是多少?

(2)試運用獨立性檢驗的思想方法分析:學生的學習積極性與對待班級工作的態(tài)度是否有關?并說明理由.

參考公式與臨界值表:K2.

P(K2≥k)

0.100

0.050

0.025

0.010

0.001

k

2.706

3.841

5.024

6.635

10.828

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在直角坐標系中,以原點為極點,x軸的正半軸為極軸建立極坐標系,已知曲線C:ρsin2θ=2acos θ(a>0),過點P(-2,-4)的直線l: (t為參數)與曲線C相交于M,N兩點.

(1)求曲線C的直角坐標方程和直線l的普通方程;

(2)若|PM|,|MN|,|PN|成等比數列,求實數a的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓的中心為原點,離心率,其中一個焦點的坐標為

(Ⅰ)求橢圓的標準方程;

(Ⅱ)當點在橢圓上運動時,設動點的運動軌跡為若點滿足: 其中上的點.直線的斜率之積為,試說明:是否存在兩個定點,使得為定值?若存在,求的坐標;若不存在,說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】判斷下列函數的奇偶性.

(1)f(x)=x2-|x|+1,x[-1,4]; (2)f(x)=

(3)f(x)=; (4)f(x)=

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如果方程cos2x-sinx+a=0在(0,]上有解,求a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,四棱錐中,底面為矩形, 平面, ,點的中點,點在棱上移動.

(1)當點的中點時,試判斷與平面的位置關系,并說明理由;

(2)求證:無論點的何處,都有;

(3)求二面角的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在△ABC中,BC邊上的中線AD長為3,且BD=2,sinB=

(Ⅰ)求sin∠BAD的值;

(Ⅱ)求AC的長.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,已知底角為45的等腰梯形ABCD,底邊BC長為7cm,腰長為,當一條垂直于底邊BC

(垂足為F)的直線l從左至右移動(與梯形ABCD有公共點)時,直線l把梯形分成兩部分,令BF=x

(1)試寫出直線l左邊部分的面積f(x)與x的函數.

(2)已知A={x|f(x)<4},B={x|a2<x<a+2},若AB=B,求a的取值范圍。.

查看答案和解析>>

同步練習冊答案