(本小題滿分14分)
如圖1,在等腰梯形CDEF中,CB、DA是梯形的高,,,現(xiàn)將梯形沿CB、DA折起,使且,得一簡單組合體如圖2示,已知分別為的中點(diǎn).
圖1 圖2
(1)求證:平面;
(2)求證:;
(3)當(dāng)多長時,平面與平面所成的銳二面角為?
(1)先由中位線定理證,再根據(jù)線面平行的判定定理證明即可;
(2)先證,再證,進(jìn)而證明平面,從而結(jié)論可證;
(3)時,平面與平面所成的銳二面角為
解析試題分析:(1)證明:連,∵四邊形是矩形,為中點(diǎn),
∴為中點(diǎn), ……1分
在中,為中點(diǎn),故 ……3分
∵平面,平面,平面; ……4分
(其它證法,請參照給分)
(2)依題意知 且
∴平面
∵平面,∴, ……5分
∵為中點(diǎn),∴
結(jié)合,知四邊形是平行四邊形
∴, ……7分
而,∴ ∴,即 ……8分
又,∴平面,
∵平面,∴. ……9分
(3)解法一:如圖,分別以所在的直線為軸建立空間直角坐標(biāo)系
設(shè),則
易知平面的一個法向量為, ……10分
設(shè)平面的一個法向量為,則
故,即
令,則
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,已知四棱錐E-ABCD的底面為菱形,且∠ABC=60°,AB=EC=2,AE=BE=
(1)求證:平面EAB⊥平面ABCD
(2)求二面角A-EC-D的余弦值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在三棱錐P -ABC中,點(diǎn)P在平面ABC上的射影D是AC的中點(diǎn).BC ="2AC=8,AB" =
(I )證明:平面PBC丄平面PAC
(II)若PD =,求二面角A-PB-C的平面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
如圖,在三棱錐中,,,,,, 點(diǎn),分別在棱上,且,
(Ⅰ)求證:平面PAC
(Ⅱ)當(dāng)為的中點(diǎn)時,求與平面所成的角的正弦值;
(Ⅲ)是否存在點(diǎn)使得二面角為直二面角?并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在中,點(diǎn)是的中點(diǎn),點(diǎn)是的中點(diǎn),的延長線交與點(diǎn)。
(1)求的值;
(2)若的面積為,四邊形的面積為,求的值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分12分)
如圖,四邊形ABCD為正方形,PD⊥平面ABCD,PD∥QA,QA=AB=PD.
(1)證明:平面PQC⊥平面DCQ;
(2)求二面角Q-BP-C的余弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com