【題目】如圖,河的兩岸分別有生活小區(qū),其中,三點(diǎn)共線,的延長(zhǎng)線交于點(diǎn),測(cè)得,,,,若以所在直線分別為軸建立平面直角坐標(biāo)系則河岸可看成是曲線(其中是常數(shù))的一部分,河岸可看成是直線(其中為常數(shù))的一部分.

1)求的值.

2)現(xiàn)準(zhǔn)備建一座橋,其中分別在上,且的橫坐標(biāo)為.寫(xiě)出橋的長(zhǎng)關(guān)于的函數(shù)關(guān)系式,并標(biāo)明定義域;當(dāng)為何值時(shí),取到最小值?最小值是多少?

【答案】1,.2;當(dāng)時(shí)取到最小值,為

【解析】

1)計(jì)算,,,將點(diǎn)代入直線方程計(jì)算得到答案.

2)計(jì)算,得到,再利用均值不等式計(jì)算得到答案.

1)由題意得:,,∴,,,

,代入,解得:,

,代入,解得.

2)由(1)得:點(diǎn)在上,∴,

①橋的長(zhǎng)到直線的距離,

;

②由①得:,

,∴

當(dāng)且僅當(dāng)時(shí)即“=”成立,∴.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】以下給出五個(gè)命題,其中真命題的序號(hào)為______

①函數(shù)在區(qū)間上存在一個(gè)零點(diǎn),則的取值范圍是;

②“任意菱形的對(duì)角線一定相等”的否定是“菱形的對(duì)角線一定不相等”;

;

④若,則;

⑤“”是“成等比數(shù)列”的充分不必要條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知平面內(nèi)動(dòng)點(diǎn)到兩定點(diǎn)的距離之和為4.

(Ⅰ)求動(dòng)點(diǎn)的軌跡的方程;

(Ⅱ)已知直線的傾斜角均為,直線過(guò)坐標(biāo)原點(diǎn)且與曲線相交于, 兩點(diǎn),直線過(guò)點(diǎn)且與曲線是交于 兩點(diǎn),求證:對(duì)任意, .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)的最大值為, 的圖像關(guān)于軸對(duì)稱.

1)求實(shí)數(shù) 的值.

2)設(shè),則是否存在區(qū)間,使得函數(shù)在區(qū)間上的值域?yàn)?/span>若存在,求實(shí)數(shù)的取值范圍;若不存在請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】表示值域?yàn)?/span>的函數(shù)組成的集合,表示具有如下性質(zhì)的函數(shù)組成的集合:對(duì)于函數(shù),存在一個(gè)正數(shù),使得函數(shù)的值域包含于區(qū)間。例如,當(dāng),時(shí),,。則下列命題中正確的是:( )

A.設(shè)函數(shù)的定義域?yàn)?/span>,則“”的充要條件是“,

B.函數(shù)的充要條件是有最大值和最小值

C.若函數(shù),的定義域相同,且,則

D.若函數(shù)有最大值,則

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知圓,點(diǎn)是圓上任意一點(diǎn),線段的垂直平分線和半徑相交于.

(1)求動(dòng)點(diǎn)的軌跡的方程;

(2)已知是軌跡的三個(gè)動(dòng)點(diǎn),點(diǎn)在一象限, 關(guān)于原點(diǎn)對(duì)稱,且,問(wèn)的面積是否存在最小值?若存在,求出此最小值及相應(yīng)直線的方程;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】正方體ABCD-A1B1C1D1中,二面角A-BD1-B1的大小是__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,平面平面,是棱的中點(diǎn),,

求證:平面;

若二面角大于,求四棱錐體積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】提升城市道路通行能力,可為市民提供更多出行便利.我校某研究性學(xué)習(xí)小組對(duì)成都市一中心路段(限行速度為千米/小時(shí))的擁堵情況進(jìn)行調(diào)查統(tǒng)計(jì),通過(guò)數(shù)據(jù)分析發(fā)現(xiàn):該路段的車流速度(/千米)與車流密度(千米/小時(shí))之間存在如下關(guān)系:如果車流密度不超過(guò)該路段暢通無(wú)阻(車流速度為限行速度);當(dāng)車流密度在時(shí),車流速度是車流密度的一次函數(shù);車流密度一旦達(dá)到該路段交通完全癱瘓(車流速度為零).

1)求關(guān)于的函數(shù)

2)已知車流量(單位時(shí)間內(nèi)通過(guò)的車輛數(shù))等于車流密度與車流速度的乘積,求此路段車流量的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案