【題目】已知函數(shù)的最大值為, 的圖像關(guān)于軸對稱.
(1)求實(shí)數(shù), 的值.
(2)設(shè),則是否存在區(qū)間,使得函數(shù)在區(qū)間上的值域?yàn)?/span>?若存在,求實(shí)數(shù)的取值范圍;若不存在,請說明理由.
【答案】(1), .(2)見解析.
【解析】【試題分析】(1)對求導(dǎo),利用它的單調(diào)性求得當(dāng)時函數(shù)取得最大值,解方程求得.根據(jù)二次函數(shù)的對稱軸可求得.(2)由(1)知,利用的二階導(dǎo)數(shù)判斷出函數(shù)在區(qū)間內(nèi)單調(diào)遞增,故有, 問題轉(zhuǎn)化為關(guān)于的方程在區(qū)間內(nèi)是否存在兩個不相等的實(shí)根來求解.利用分離常數(shù)法將分離出來后利用導(dǎo)數(shù)證明不存在.
【試題解析】
(1)由題意得,令,解得,
當(dāng)時, ,函數(shù)單調(diào)遞增;
當(dāng)時, ,函數(shù)單調(diào)遞減.
所以當(dāng)時, 取得極大值,也是最大值,所以,解得.
又的圖像關(guān)于軸對稱,所以,解得.
(2)由(1)知, ,則,所以,令,則對恒成立,
所以在區(qū)間內(nèi)單調(diào)遞增,所以恒成立,
所以函數(shù)在區(qū)間內(nèi)單調(diào)遞增.
假設(shè)存在區(qū)間,使得函數(shù)在區(qū)間上的值域是,
則,
問題轉(zhuǎn)化為關(guān)于的方程在區(qū)間內(nèi)是否存在兩個不相等的實(shí)根,
即方程在區(qū)間內(nèi)是否存在兩個不相等的實(shí)根,
令, ,則,
設(shè), ,則對恒成立,所以函數(shù)在區(qū)間內(nèi)單調(diào)遞增,故恒成立,所以,所以函數(shù)在區(qū)間內(nèi)單調(diào)遞增,所以方程在區(qū)間內(nèi)不存在兩個不相等的實(shí)根.
綜上所述,不存在區(qū)間,使得函數(shù)在區(qū)間上的值域是.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x2-2(a+2)x+a2,g(x)=-x2+2(a-2)x-a2+8.設(shè)H1(x)=max,H2(x)=min (max表示p,q中的較大值,min表示p,q中的較小值).記H1(x)的最小值為A,H2(x)的最大值為B,則A-B=( )
A.16B.-16
C.a2-2a-16D.a2+2a-16
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某保險公司針對企業(yè)職工推出一款意外險產(chǎn)品,每年每人只要交少量保費(fèi),發(fā)生意外后可一次性獲賠50萬元.保險公司把職工從事的所有崗位共分為、、三類工種,根據(jù)歷史數(shù)據(jù)統(tǒng)計(jì)出三類工種的每賠付頻率如下表(并以此估計(jì)賠付概率).
(Ⅰ)根據(jù)規(guī)定,該產(chǎn)品各工種保單的期望利潤都不得超過保費(fèi)的20%,試分別確定各類工種每張保單保費(fèi)的上限;
(Ⅱ)某企業(yè)共有職工20000人,從事三類工種的人數(shù)分布比例如圖,老板準(zhǔn)備為全體職工每人購買一份此種保險,并以(Ⅰ)中計(jì)算的各類保險上限購買,試估計(jì)保險公司在這宗交易中的期望利潤.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】[選修4-4:坐標(biāo)系與參數(shù)方程]
在平面直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)),在以直角坐標(biāo)系的原點(diǎn)為極點(diǎn), 軸的正半軸為極軸的極坐標(biāo)系中,曲線的極坐標(biāo)方程為.
(Ⅰ)求曲線的直角坐標(biāo)方程和直線的普通方程;
(Ⅱ)若直線與曲線相交于, 兩點(diǎn),求的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】[選修4-5:不等式選講]
已知函數(shù).
(Ⅰ)當(dāng)時,求的解集;
(Ⅱ)當(dāng)時, 恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】從某市主辦的科技知識競賽的學(xué)生成績中隨機(jī)選取了40名學(xué)生的成績作為樣本,已知這些成績?nèi)吭?0分至100分之間,現(xiàn)將成績按如下方式分成6組:第一組;第二組;;第六組,并據(jù)此繪制了如圖所示的頻率分布直方圖.
求成績在區(qū)間內(nèi)的學(xué)生人數(shù);
估計(jì)這40名學(xué)生成績的眾數(shù)和中位數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,河的兩岸分別有生活小區(qū)和,其中,三點(diǎn)共線,與的延長線交于點(diǎn),測得,,,,,若以所在直線分別為軸建立平面直角坐標(biāo)系則河岸可看成是曲線(其中是常數(shù))的一部分,河岸可看成是直線(其中為常數(shù))的一部分.
(1)求的值.
(2)現(xiàn)準(zhǔn)備建一座橋,其中分別在上,且,的橫坐標(biāo)為.寫出橋的長關(guān)于的函數(shù)關(guān)系式,并標(biāo)明定義域;當(dāng)為何值時,取到最小值?最小值是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知集合M={x|x<-3,或x>5},P={x|(x-a)·(x-8)≤0}.
(1)求M∩P={x|5<x≤8}的充要條件;
(2)求實(shí)數(shù)a的一個值,使它成為M∩P={x|5<x≤8}的一個充分但不必要條件.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知{xn}是各項(xiàng)均為正數(shù)的等比數(shù)列,且x1+x2=3,x3-x2=2.
(1)求數(shù)列{xn}的通項(xiàng)公式;
(2)如圖,在平面直角坐標(biāo)系xOy中,依次連接點(diǎn)P1(x1,1),P(x2,2),…,Pn+1(xn+1,n+1)得到折線P1P2…Pn+1,求由該折線與直線y=0,x=x1,x=xn+1所圍成的區(qū)域的面積Tn.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com