【題目】表示值域為的函數(shù)組成的集合,表示具有如下性質(zhì)的函數(shù)組成的集合:對于函數(shù),存在一個正數(shù),使得函數(shù)的值域包含于區(qū)間。例如,當(dāng),時,,。則下列命題中正確的是:( )

A.設(shè)函數(shù)的定義域為,則“”的充要條件是“,

B.函數(shù)的充要條件是有最大值和最小值

C.若函數(shù),的定義域相同,且,,則

D.若函數(shù)有最大值,則

【答案】ACD

【解析】

A選項中,根據(jù)函數(shù)的定義域、值域的定義,轉(zhuǎn)化成用簡易邏輯語言表示出來;

B選項中舉反例保證函數(shù)的值域為集合的子集,但值域是一個開區(qū)間,從而說明函數(shù)沒有最值;C選項中從并集的角度認識函數(shù)值域,可以發(fā)現(xiàn),從而發(fā)現(xiàn)命題正確;D選項中從極限的角度證明,均不成立,所以,再求出函數(shù)的值域為,從而得到命題D正確.

A,“”即函數(shù)值域為,“,,”表示的是函數(shù)可以在中任意取值,故有:設(shè)函數(shù)的定義域為,則“”的充要條件是“,,”,命題A是真命題;

B,若函數(shù),即存在一個正數(shù),使得函數(shù)的值域包含于區(qū)間

.例如:函數(shù)滿足,則有,此時,無最大值,無最小值.命題B“若函數(shù),則有最大值和最小值.”是假命題;

C,若函數(shù),的定義域相同,且,則值域為,,并且存在一個正數(shù),使得,,則命題C是真命題.

D,函數(shù)有最大值,假設(shè),當(dāng)時,,,,則,與題意不符; 假設(shè),當(dāng)時,,,則,與題意不符.,即函數(shù),當(dāng)時,,,即;當(dāng)時,;當(dāng)時,,,即

,即,故命題D是真命題.

故選:ACD.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知奇函數(shù)fx=a-x|x|,常數(shù)aR,且關(guān)于x的不等式mx2+mf[fx]對所有的x[-2,2]恒成立,則實數(shù)m的取值范圍是______

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知動點P到定點的距離比它到直線的距離小2,設(shè)動點P的軌跡為曲線C

求曲線C的方程;

若直線與曲線C和圓從左至右的交點依次為AB,C,D的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】[選修4-5:不等式選講]

已知函數(shù).

(Ⅰ)當(dāng)時,求的解集;

(Ⅱ)當(dāng)時, 恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)當(dāng)時,函數(shù)恒有意義,求實數(shù)的取值范圍;

(2)是否存在這樣的實數(shù),使得函數(shù)fx)在區(qū)間上為減函數(shù),并且最大值為?如果存在,試求出的值;如果不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,河的兩岸分別有生活小區(qū),其中,三點共線,的延長線交于點,測得,,,,,若以所在直線分別為軸建立平面直角坐標(biāo)系則河岸可看成是曲線(其中是常數(shù))的一部分,河岸可看成是直線(其中為常數(shù))的一部分.

1)求的值.

2)現(xiàn)準(zhǔn)備建一座橋,其中分別在上,且,的橫坐標(biāo)為.寫出橋的長關(guān)于的函數(shù)關(guān)系式,并標(biāo)明定義域;當(dāng)為何值時,取到最小值?最小值是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓與直線相切,設(shè)點為圓上一動點, 軸于,且動點滿足,設(shè)動點的軌跡為曲線

(1)求曲線的方程;

(2)直線與直線垂直且與曲線交于兩點,求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某種蔬菜從1月1日起開始上市,通過市場調(diào)查,得到該蔬菜種植成本(單位:元/)與上市時間(單位:10天)的數(shù)據(jù)如下表:

時間

5

11

25

種植成本

15

10.8

15

(1)根據(jù)上表數(shù)據(jù),從下列函數(shù):,中(其中),選取一個合適的函數(shù)模型描述該蔬菜種植成本與上市時間的變化關(guān)系;

(2)利用你選取的函數(shù)模型,求該蔬菜種植成本最低時的上市時間及最低種植成本.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某市每年春節(jié)前后,由于大量的煙花炮竹的燃放,空氣污染較為嚴重.該市環(huán)保研究所對近年春節(jié)前后每天的空氣污染情況調(diào)查研究后發(fā)現(xiàn),每天空氣污染的指數(shù).ft),隨時刻t(時)變化的規(guī)律滿足表達式,其中a為空氣治理調(diào)節(jié)參數(shù),且a∈(0,1).

(1)令,求x的取值范圍;

(2)若規(guī)定每天中ft)的最大值作為當(dāng)天的空氣污染指數(shù),要使該市每天的空氣污染指數(shù)不超過5,試求調(diào)節(jié)參數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案