A. | [0,2] | B. | (-∞,2] | C. | [2,4] | D. | [2,+∞) |
分析 令t=-x2+4x≥0,求得函數(shù)的定義域,f(x)=g(t)=$\sqrt{t}$,本題即求函數(shù)t在定義域內(nèi)的增區(qū)間,再來一用二次函數(shù)的性質(zhì)可得結(jié)論.
解答 解:令t=-x2+4x≥0,求得0≤x≤4,可得函數(shù)的定義域?yàn)閇0,4],f(x)=$\sqrt{t}$,
故本題即求函數(shù)t在定義域內(nèi)的增區(qū)間,
再來一用二次函數(shù)的性質(zhì)可得t在定義域內(nèi)的增區(qū)間為[0,2],
故選:A.
點(diǎn)評(píng) 本題主要考查復(fù)合函數(shù)的單調(diào)性,根式函數(shù)、二次函數(shù)的性質(zhì),屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 向左平行移動(dòng)$\frac{3π}{8}$個(gè)單位 | B. | 向右平行移動(dòng)$\frac{3π}{8}$個(gè)單位 | ||
C. | 向左平行移動(dòng)$\frac{3π}{4}$個(gè)單位 | D. | 向右平行移動(dòng)$\frac{3π}{4}$個(gè)單位 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{x^2}{9}-\frac{y^2}{16}=1$ | B. | $\frac{x^2}{16}-\frac{y^2}{9}=1$ | C. | $\frac{x^2}{3}-\frac{y^2}{4}=1$ | D. | $\frac{x^2}{4}-\frac{y^2}{3}=1$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com