分析 由題意,函數f(x)為奇函數,f(-x)=-f(x),當x>0時,f(x)=x2-2x+3,可求x>0時的解析式.
解答 解:函數f(x)時R上的奇函數,即f(-x)=-f(x),f(0)=0
當x>0時,f(x)=x2-2x+3,
當x<0時,則-x>0,那么:f(-x)=x2+x+3,
∵f(-x)=-f(x),
∴f(x)=-x2-2x-3,
故得函數f(x)解析式為f(x)=$\left\{\begin{array}{l}{-{x}^{2}-2x-3,(x<0)}\\{0,(x=0)}\\{{x}^{2}-2x+3,(x>0)}\end{array}\right.$.
故答案為:f(x)=$\left\{\begin{array}{l}{-{x}^{2}-2x-3,(x<0)}\\{0,(x=0)}\\{{x}^{2}-2x+3,(x>0)}\end{array}\right.$.
點評 本題考查了分段函數解析式的求法,利用了函數是奇函數這一性質.屬于基礎題.
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
網購金額(元) | 頻數 | 頻率 |
(0,500] | 5 | 0.05 |
(500,1000] | x | p |
(1000,1500] | 15 | 0.15 |
(1500,2000] | 25 | 0.25 |
(2000,2500] | 30 | 0.3 |
(2500,3000] | y | q |
合計 | 100 | 1.00 |
x | 網齡3年以上 | 網齡不足3年 | 合計 |
購物金額在2000元以上 | 35 | ||
購物金額在2000元以下 | 20 | ||
總計 | 100 |
P(K2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | [0,2] | B. | (-∞,2] | C. | [2,4] | D. | [2,+∞) |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 5個 | B. | 4個 | C. | 3個 | D. | 2個 |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
喜歡冷凍 | 不喜歡冷凍 | 合計 | |
女學生 | 60 | 20 | 80 |
男學生 | 10 | 10 | 20 |
合計 | 70 | 30 | 100 |
P(χ2≥k) | 0.100 | 0.050 | 0.010 |
k | 2.706 | 3.841 | 6.635 |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $\sqrt{2}$ | B. | 2-$\sqrt{2}$ | C. | 1 | D. | $\sqrt{2}$-1 |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | “若a2+b2+c2≥3,則a+b+c=3” | B. | “若a2+b2+c2<3,則a+b+c≠3” | ||
C. | “若a2+b2+c2≥3,則a+b+c≠3” | D. | “若a2+b2+c2<3,則a+b+c=3” |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | -1 | B. | 0 | C. | 1 | D. | 2 |
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com