1.為了得到函數(shù)y=sin2x-cos2x的圖象,可以將函數(shù)y=$\sqrt{2}$cos2x的圖象( 。
A.向左平行移動$\frac{3π}{8}$個(gè)單位B.向右平行移動$\frac{3π}{8}$個(gè)單位
C.向左平行移動$\frac{3π}{4}$個(gè)單位D.向右平行移動$\frac{3π}{4}$個(gè)單位

分析 利用兩角和的正弦公式、誘導(dǎo)公式化簡函數(shù)的解析式,再利用y=Asin(ωx+φ)的圖象變換規(guī)律,得出結(jié)論.

解答 解:函數(shù)y=sin2x-cos2x=$\sqrt{2}$sin(2x-$\frac{π}{4}$),函數(shù)y=$\sqrt{2}$cos2x=$\sqrt{2}$sin(2x+$\frac{π}{2}$),
故把函數(shù)y=$\sqrt{2}$cos2x的圖象向右平行移動$\frac{3π}{8}$個(gè)單位,
可得函數(shù)y=sin2x-cos2x═$\sqrt{2}$sin(2x-$\frac{π}{4}$) 的圖象,
故選:B.

點(diǎn)評 本題主要考查兩角和的正弦公式、誘導(dǎo)公式的應(yīng)用,利用了y=Asin(ωx+φ)的圖象變換規(guī)律,統(tǒng)一這兩個(gè)三角函數(shù)的名稱,是解題的關(guān)鍵,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.利用定義證明函數(shù)$f(x)=\frac{3}{x}+1$在區(qū)間[3,6]上是單調(diào)減函數(shù),并求其值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.求下列函數(shù)的定義域:
(1)y=$\frac{\sqrt{x+1}}{x+2}$;
(2)y=$\frac{\sqrt{2x-1}}{x-1}$+(5x-4)0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.對某電子元件進(jìn)行壽命追蹤調(diào)查,情況如表.
壽命(h)100~200200~300300~400400~500500~600
個(gè)  數(shù)2030804030
(1)列出頻率分布表,并畫出頻率分布直方圖;
(2)從頻率分布直方圖估計(jì)出電子元件壽命的眾數(shù)、中位數(shù)分別是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.設(shè)集合A={x∈N|0≤x<3}的真子集個(gè)數(shù)為(  )
A.16B.8C.7D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.當(dāng)x∈(0,5]時(shí),函數(shù)f(x)=3x2-4x+c的值域?yàn)椋ā 。?table class="qanwser">A.[f(0),f(5)]B.[f(0),f($\frac{2}{3}$)]C.[f($\frac{2}{3}$),f(5)]D.[c,f(5)]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.2016年1月2日凌晨某公司公布的元旦全天交易數(shù)據(jù)顯示,天貓?jiān)┊?dāng)天全天的成交金額為315.5億元.為了了解網(wǎng)購者一次性購物情況,某統(tǒng)計(jì)部門隨機(jī)抽查了1月1日100名網(wǎng)購者的網(wǎng)購情況,得到如表數(shù)據(jù)統(tǒng)計(jì)表,已知網(wǎng)購金額在2000元以上(不含2000元)的頻率為0.4.
網(wǎng)購金額(元)頻數(shù)頻率
(0,500]50.05
(500,1000]xp
(1000,1500]150.15
(1500,2000]250.25
(2000,2500]300.3
(2500,3000]yq
合計(jì)1001.00
(1)先求出x,y,p,q的值,再將如圖3所示的頻率分布直方圖繪制完整;
(2)對這100名網(wǎng)購者進(jìn)一步調(diào)查顯示:購物金額在2000元以上的購物者中網(wǎng)齡3年以上的有35人,購物金額在2000元以下(含2000元)的購物者中網(wǎng)齡不足3年的有20人,請?zhí)顚懴旅娴牧新?lián)表,并據(jù)此判斷能否在犯錯(cuò)誤的概率不超過0.025的前提下認(rèn)為網(wǎng)購金額超過2000元與網(wǎng)齡在3年以上有關(guān)?
x網(wǎng)齡3年以上網(wǎng)齡不足3年合計(jì)
購物金額在2000元以上35
購物金額在2000元以下20
總計(jì)100
參考數(shù)據(jù):
P(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
(參考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)
(3)從這100名網(wǎng)購者中根據(jù)購物金額分層抽出20人給予返券獎勵(lì),為進(jìn)一步激發(fā)購物熱情,在(2000,2500]和(2500,3000]兩組所抽出的8人中再隨機(jī)抽取2人各獎勵(lì)1000元現(xiàn)金,求(2000,2500]組獲得現(xiàn)金將的數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.函數(shù)f(x)=$\sqrt{-{x}^{2}+4x}$的單調(diào)增區(qū)間為(  )
A.[0,2]B.(-∞,2]C.[2,4]D.[2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.命題“若a+b+c=3,則a2+b2+c2≥3”的逆命題是( 。
A.“若a2+b2+c2≥3,則a+b+c=3”B.“若a2+b2+c2<3,則a+b+c≠3”
C.“若a2+b2+c2≥3,則a+b+c≠3”D.“若a2+b2+c2<3,則a+b+c=3”

查看答案和解析>>

同步練習(xí)冊答案