【題目】在四棱錐V-ABCD中,底面ABCD是正方形,側(cè)面VAD是正三角形,平面VAD⊥底面ABCD.
(Ⅰ)證明AB⊥平面VAD;
(Ⅱ)求面VAD與面VDB所成二面角的大。
【答案】(Ⅰ)見(jiàn)解析(Ⅱ)
【解析】
(Ⅰ)因?yàn)槠矫?/span>VAD⊥平面ABCD,平面VAD∩平面ABCD=AD,
又AB在平面ABCD內(nèi),AD⊥AB,所以AB⊥平面VAD.
(Ⅱ)設(shè)AD的中點(diǎn)為O,連結(jié)VO,則VO⊥底面ABCD.
又設(shè)正方形邊長(zhǎng)為1,建立空間直角坐標(biāo)系如圖所示.
則,A(,0,0), B(,1,0),
D(-,0,0), V(0,0,);
.
由(Ⅰ)知是平面VAD的法向量.設(shè)是平面VDB的法向量,則
∴
由圖知,面VAD與面VDB所成的二面角為銳角,
故,面VAD與面VDB所成二面角的大小為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直線l1:2x-y+2=0與l2:x+2y-4=0,點(diǎn)P(1, m).
(Ⅰ)若點(diǎn)P到直線l1, l2的距離相等,求實(shí)數(shù)m的值;
(Ⅱ)當(dāng)m=1時(shí),已知直線l經(jīng)過(guò)點(diǎn)P且分別與l1, l2相交于A, B兩點(diǎn),若P恰好
平分線段AB,求A, B兩點(diǎn)的坐標(biāo)及直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的離心率為,且經(jīng)過(guò)點(diǎn).
求橢圓的標(biāo)準(zhǔn)方程;
設(shè)為橢圓的中線,點(diǎn),過(guò)點(diǎn)的動(dòng)直線交橢圓于另一點(diǎn),直線上的點(diǎn)滿足,求直線與的交點(diǎn)的軌跡方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù),
(1)若關(guān)于的不等式的解集為,求實(shí)數(shù)的值;
(2)求不等式的解集;
(3)若對(duì)于,恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若圓上至少有三個(gè)不同的點(diǎn)到直線的距離為,則直線l的傾斜角的取值范圍是( )
A.B.
C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知斜三棱柱的棱長(zhǎng)都是,側(cè)棱與底面成60°角,側(cè)面底面.
(1)求證:;
(2)求平面與平面所成的銳二面角的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在四棱臺(tái)中,底面,四邊形為菱形,,.
(1)若為中點(diǎn),求證:平面;
(2)求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】給出如下四個(gè)命題:①若“且”為假命題,則均為假命題;②命題“若,則”的否命題為“若,則”; ③“,則”的否定是“,則”;④在中,“”是“”的充要條件.其中正確的命題的個(gè)數(shù)是( )
A. 1B. 2C. 3D. 4
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列{an}的前n項(xiàng)和Sn=2an-2(n∈Z+).
(1)求通項(xiàng)公式an;
(2)設(shè),為數(shù)列{bn}的前n項(xiàng)和,求正整數(shù)k,使得對(duì)任意的n∈Z+,均有T4≥Tn;
(3)設(shè),Rn為數(shù)列{cn}的前n項(xiàng)和,若對(duì)任意的n∈Z+,均有Rn<λ,求λ的最小值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com