15.已知函數(shù)f(x)=(sinx+cosx)2+cos2x
(1)將f(x)化簡成f(x)=Asin(ωx+φ)+k的形式,并求f(x)最小正周期;
(2)求f(x)在區(qū)間[0,$\frac{π}{2}$]上的最大值和最小值.

分析 (1)利用平方和公式,二倍角的正弦函數(shù)公式,兩角和的正弦函數(shù)公式即可化簡為f(x)=Asin(ωx+φ)+k的形式,利用周期公式即可得解f(x)最小正周期;
(2)由已知可求$2x+\frac{π}{4}∈[{\frac{π}{4},\frac{5π}{4}}]\end{array}$,利用正弦函數(shù)的圖象和性質(zhì)即可得解f(x)在區(qū)間[0,$\frac{π}{2}$]上的最大值和最小值.

解答 (本小題滿分9分)
解:(1)∵$f(x)=1+sin2x+cos2x=\sqrt{2}sin(2x+\frac{π}{4})+1$,
∴f(x)的最小正周期為$T=\frac{2π}{2}=π$;
(2)$\begin{array}{l}∵x∈[{0,\frac{π}{2}}]$,
∴$2x+\frac{π}{4}∈[{\frac{π}{4},\frac{5π}{4}}]\end{array}$,
∴sin(2x+$\frac{π}{4}$)∈[-$\frac{\sqrt{2}}{2}$,1],
∴$f{(x)_{max}}=\sqrt{2}+1,f{(x)_{min}}=0$.

點評 本題主要考查了三角函數(shù)恒等變換的應(yīng)用,三角函數(shù)周期公式的應(yīng)用,正弦函數(shù)的圖象和性質(zhì)的應(yīng)用,考查了計算能力和轉(zhuǎn)化思想,考查了數(shù)形結(jié)合思想,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.若長方體的一個頂點上三條棱長分別是1、1、2,且它的八個頂點都在同一球面上,則這個球的體積是( 。
A.B.$\sqrt{6}π$C.D.12π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.如圖,多面體ABCDEF中,四邊形ABCD是邊長為2的正方形,四邊形EFBD為等腰梯形,EF∥BD,EF=$\frac{1}{2}$BD,平面EFBD⊥平面ABCD.
(Ⅰ)證明:AC⊥平面EFBD;
(Ⅱ)若BF=$\frac{\sqrt{10}}{2}$,求多面體ABCDEF的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.某種產(chǎn)品的廣告費用支出與銷售額之間有如下的對應(yīng)數(shù)據(jù):
x24568
y3040605070
(1)畫出散點圖,并說明銷售額y與廣告費用支出x之間是正相關(guān)還是負相關(guān)?
(2)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出y關(guān)于x的線性回歸方程$\hat y=bx+a$,$b=\frac{{\sum_{i=1}^n{({x_i}-\overline x)({y_i}-\overline y)}}}{{\sum_{i=1}^n{{{({x_i}-\overline x)}^2}}}}=\frac{{\sum_{i=1}^n{({x_i}{y_i})-n\overline x\overline y}}}{{\sum_{i=1}^n{{x_i}^2-n{{\overline x}^2}}}},a=\overline y-\hat b\overline x$,求出回歸直線方程.
(3)據(jù)此估計廣告費用為10時,銷售收入y的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.執(zhí)行如圖的程序框圖,若輸入a,b,k分別為1,2,3,則輸出的M=(  )
A.$\frac{2}{3}$B.$\frac{16}{5}$C.$\frac{7}{2}$D.$\frac{15}{8}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知△ABC三個頂點坐標分別為A(-1,3),B(-3,0),C(1,2),求△ABC的面積S.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.如圖所示,在四棱錐P-ABCD中,底面ABCD為菱形,且∠DAB=60°,PA=PD,M為CD的中點,BD⊥PM.
(1)求證:平面PAD⊥平面ABCD;
(2)若∠APD=60°,求直線AB與平面PBM所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知曲線f(x)=ex-4tx+1上存在與直線y=$\frac{1}{3}$x垂直的切線,則實數(shù)t的取值范圍是( 。
A.t>$\frac{3}{4}$B.t≤$\frac{3}{4}$C.t>-$\frac{1}{12}$D.t≤-$\frac{1}{12}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.某種產(chǎn)品的廣告費支出x(單位:百萬元)與銷售額y(單位:百萬元)之間有如下對應(yīng)數(shù)據(jù):
x24568
y3040605070
(1)請根據(jù)表中提供的數(shù)據(jù),用最小二乘法求出y關(guān)于x的線性回歸方程$\hat y=\hat bx+\hat a$;
(2)求估計廣告費支出700萬元的銷售額.

查看答案和解析>>

同步練習(xí)冊答案