4.已知曲線f(x)=ex-4tx+1上存在與直線y=$\frac{1}{3}$x垂直的切線,則實數(shù)t的取值范圍是(  )
A.t>$\frac{3}{4}$B.t≤$\frac{3}{4}$C.t>-$\frac{1}{12}$D.t≤-$\frac{1}{12}$

分析 設(shè)切點為(m,n),求出函數(shù)的導(dǎo)數(shù),可得切線的斜率,由題意可得em-4t=-3有解,即em=4t-3,運用指數(shù)函數(shù)的值域,解不等式即可得到所求范圍.

解答 解:設(shè)切點為(m,n),
由f(x)=ex-4tx+1的導(dǎo)數(shù)為f′(x)=ex-4t,
可得切線的斜率為k=em-4t,
由題意可得em-4t=-3有解,
即em=4t-3,由em>0,可得4t-3>0,
解得t>$\frac{3}{4}$.
故選:A.

點評 本題考查導(dǎo)數(shù)的運用:求切線的斜率,考查兩直線垂直的條件:斜率之積為-1,同時考查存在性問題的解法,注意運用指數(shù)函數(shù)的值域,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.由矩形ABCD與梯形AFEB構(gòu)成平面多邊形(如圖1),O為AB中點,且AB∥EF,AB=2EF,現(xiàn)將平面多邊形沿AB折起,使矩形ABCD與梯形AFEB所在平面所成二面角為直二面角(如圖2).
(1)若點P為CF的中點,求證:OP∥平面DAF;
(2)過點C,B,F(xiàn)的平面將多面體EFADCB分割成兩部分,求兩部分體積的比值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知函數(shù)f(x)=(sinx+cosx)2+cos2x
(1)將f(x)化簡成f(x)=Asin(ωx+φ)+k的形式,并求f(x)最小正周期;
(2)求f(x)在區(qū)間[0,$\frac{π}{2}$]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.在2016年春節(jié)期間,某市物價部門,對本市五個商場銷售的某商品一天的銷售量及其價格進行調(diào)查,五個商場的售價x元和銷售量y件之間的一組數(shù)據(jù)如表所示:
價格x99.51010.511
銷售量y11M865
通過分析,發(fā)現(xiàn)銷售量y對商品的價格x具有線性相關(guān)關(guān)系,其回歸方程為$\widehat{y}$=-3.2x+40,則表格中m的值是( 。
A.6.4B.8C.9.6D.10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.加工某種零件分三道工序,做第一道工序有5人,做第二道工序有6人,做第三道工序有4人,從中選3人,每人做一道工序,則選法總數(shù)是120.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.設(shè)函數(shù)f(x)=x3+ax2+bx(x>0)的圖象與x軸相切于M(3,0).
(1)求f(x)的解析式;
(2)是否存在兩個不等正數(shù)s,t(s<t),當(dāng)x∈[s,t]時,函數(shù)f(x)=x3+ax2+bx的值域也是[s,t],若存在,求出所有這樣的正數(shù)s,t,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.在正三棱錐S-ABC中,M是SC的中點,且AM⊥SB,底面邊長AB=2$\sqrt{2}$,則正三棱錐S-ABC的體積為$\frac{4}{3}$,其外接球的表面積為12π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.點P是曲線y=x2-lnx上任意一點,則點P到直線x-y+2=0的最短距離為( 。
A.$\sqrt{3}$B.$\frac{{3\sqrt{3}}}{2}$C.$\frac{{2\sqrt{2}}}{3}$D.$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.為了解春季晝夜溫差大小與某種子發(fā)芽多少之間的關(guān)系,現(xiàn)在4月份的30天都記錄了每天晝夜溫差與每天每100顆種子浸泡后的發(fā)芽數(shù),從中隨機挑選了5天進行分析研究,得到如表格:
日期4月1日4月7日4月15日4月21日4月30日
溫差x/℃101113128
發(fā)芽數(shù)y/顆2325302616
(1)請根據(jù)4月7日、15日和21日的三天數(shù)據(jù),求出y關(guān)于x的線性回歸方程$\widehat{y}$=$\widehat$x+$\widehat{a}$;
(2)若某天種子發(fā)芽率不低于$\frac{1}{4}$,則稱該天種子發(fā)芽情況為“長勢喜人”.根據(jù)表中5天的數(shù)據(jù),以頻率為概率,估計4月份的整體種子發(fā)芽情況.若在4月份中隨機挑選3天,記“長勢喜人”的天數(shù)為X,求X的分布列及數(shù)學(xué)期望.(參考公式:$\widehat$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat$$\overline{x}$)

查看答案和解析>>

同步練習(xí)冊答案