如圖,在直三棱柱ABC-A1B1C1中,∠ABC=90°,AB=BC=AA1=2,D是AB的中點.
(Ⅰ)求AC1與平面B1BCC1所成角的正切值;
(Ⅱ)求證:AC1∥平面B1DC.
考點:直線與平面平行的判定,直線與平面所成的角
專題:空間位置關(guān)系與距離
分析:(Ⅰ)連接BC1.判斷AB⊥面BB1C1C,到底線面角;
(Ⅱ)連接BC1,交B1C于F,則F為BC1的中點,得到DF∥AC1,利用線面平行的判定定理可證.
解答: 解:(Ⅰ)連接BC1
因為直棱柱,所以BB1⊥AB,
而由于AB⊥BC,
所以AB⊥面BB1C1C,
所以∠AC1B即為AC1與平面BB1C1C所成角.
因為AB=BC=AA1=2,所以tan∠AC1B=
AB
BC1
=
2
2
2
=
2
2
;
(Ⅱ)證明:連接BC1,交B1C于F,則F為BC1的中點,
因為D是AB的中點.
所以在△ABC1中,DF∥AC1,
又DF?平面B1DC,AC1?平面B1DC,
所以AC1∥平面B1DC.
點評:本題考查了空間角的線面角以及線面平行的判定定理的運用;關(guān)鍵是將空間問題轉(zhuǎn)化為平面其他解決.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=sin(x+
π
3
)sin(x+
π
2
).
(1)求f(x)的最小正周期;
(2)若g(x)=f(x)-
3
4
,求g(x)在區(qū)間[0,
π
2
]上的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,已知長方體ABCD-A1B1C1D1的對角線A1C與側(cè)棱BB1所成的角為45°,且AB=BC=1,求A1C與側(cè)面BB1C1C所成角的大小.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知△ABC中,設(shè)角A,B,C所對的邊分別為a,b,c,G為△ABC的重心,且a
GA
+b
GB
+c
GC
=
0
,則△ABC為
( 。
A、等腰直角三角形
B、直角三角形
C、等腰三角形
D、等邊三角形

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知D為△ABC的邊BC的中點,△ABC所在平面內(nèi)有一個點P,滿足
PA
=
PB
+
PC
,則
|
PD
|
|
AD
|
的值為(  )
A、
1
3
B、
1
2
C、1
D、2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

當a1,a2,…,a25是0或2時,形如x=
a1
3
+
a2
32
+…+
a25
325
的一切數(shù)x,可滿足(  )
A、0≤x<
1
3
B、
1
3
≤x<
2
3
C、
2
3
≤x<1
D、0≤x<
1
3
2
3
≤x<1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

長方體ABCD-A1B1C1D1中,AA1=c,AB=a,AD=b,a>b,設(shè)異面直線AC1與BD所成角為θ.求證:cosθ=
a2-b2
(a2+b2)(a2+b2+c2)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

牛頓冷卻模型是指:在常溫環(huán)境下,如果最初的溫度時θ1,環(huán)境溫度是θ0,則經(jīng)過時間t(單位:min)后物體的溫度θ(單位:℃)將滿足;θ=f(t)=θ0+(θ10)e-kt,其中k為正常數(shù),假設(shè)在室內(nèi)溫度為20℃的情況下,一桶咖啡由100℃降低到60℃需要20min.
(1)求f(t)
(2)f′(0)=-2.768的實際意義是什么?
(3)畫出函數(shù)θ=f(t)在t=20附近的大致圖.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在四面體ABCD中,若M、N分別是棱AD、BC的中點,AC=BD=6,MN=3
2
,求MN與AC所成的角.

查看答案和解析>>

同步練習冊答案