20.已知向量$\overrightarrow a$與$\overrightarrow b$的夾角為${60°},|{\overrightarrow a}|=2,|{\overrightarrow b}|=5$,則|$2\overrightarrow a-\overrightarrow b$|的值為( 。
A.21B.$\sqrt{21}$C.$\sqrt{23}$D.$\sqrt{35}$

分析 根據(jù)平面向量的數(shù)量積與模長公式,計算|$2\overrightarrow a-\overrightarrow b$|的值即可.

解答 解:向量$\overrightarrow a$與$\overrightarrow b$的夾角為${60°},|{\overrightarrow a}|=2,|{\overrightarrow b}|=5$,
∴${(2\overrightarrow{a}-\overrightarrow)}^{2}$=4${\overrightarrow{a}}^{2}$-4$\overrightarrow{a}$•$\overrightarrow$+${\overrightarrow}^{2}$
=4×22-4×2×5cos60°+52
=21;
∴|$2\overrightarrow a-\overrightarrow b$|=$\sqrt{21}$.
故選:B.

點評 本題考查了平面向量數(shù)量積與模長公式的應(yīng)用問題,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.某企業(yè)生產(chǎn)甲、乙兩種產(chǎn)品均需用A,B兩種原料,已知生產(chǎn)1噸每種產(chǎn)品所需原料及每天原料的可用限額如表所示,如果生產(chǎn)1噸甲、乙產(chǎn)品可獲得利潤分別為4萬元、3萬元,則該企業(yè)每天可獲得最大利潤為13萬元
  甲 乙 原料限額
 A(噸) 2 5 10
 B(噸) 6 3 18

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.在等腰△ABC中,AB=AC=1,D是線段AC的中點,設(shè)BD=x,△ABC的面積S=f(x),則函數(shù)f(x)的圖象大致為(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.如圖四個散點圖中,適合用線性回歸模型擬合其中兩個變量的是( 。
A.①②B.①③C.②③D.③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知某批零件的長度誤差(單位:毫米)服從正態(tài)分布N(0,22),從中隨機取一件,其長度誤差落在區(qū)間(2,4)內(nèi)的概率為( 。ㄈ綦S機變量ξ服從正態(tài)分布N(μ,σ2),則P(μ-σ<ξ<μ+σ)=68.26%,P(μ-2σ<ξ<μ+2σ)=95.44%)
A.4.56%B.13.59%C.27.18%D.31.74%

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.若(x-$\frac{2}{{x}^{2}}$)n的展開式中二項式系數(shù)之和為64,則n等于( 。
A.5B.7C.8D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.若i是虛數(shù)單位,復(fù)數(shù)$\frac{1-2i}{i}$的虛部為( 。
A.2B.-2C.1D.-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知函數(shù)y=log2(ax2-2x+2)的定義域為Q.
(1)若a>0且[2,3]∩Q=∅,求實數(shù)a的取值范圍;
(2)若[2,3]⊆Q,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.設(shè)數(shù)列{an}滿足a1=$\frac{1}{3}$,an+1=an+$\frac{{{a}_{n}}^{2}}{{n}^{2}}$,n∈N*,證明:
(1)數(shù)列{an}為遞增數(shù)列;
(2)$\frac{n}{2n+1}$≤an≤$\frac{2n-1}{2n+1}$,n∈N*

查看答案和解析>>

同步練習(xí)冊答案