由原點(diǎn)O向三次曲線y=x3-3ax2+bx (a≠0)引切線,切于不同于點(diǎn)O的點(diǎn)P1(x1,y1),再由P1引此曲線的切線,切于不同于P1的點(diǎn)P2(x2,y2),如此繼續(xù)地作下去,…,得到點(diǎn)列{ P n(x n,y n)},試回答下列問(wèn)題:
(1)求x1;
(2)求xn與xn+1的關(guān)系;
(3)若a>0,求證:當(dāng)n為正偶數(shù)時(shí),xn<a;當(dāng)n為正奇數(shù)時(shí),xn>a.
【答案】
分析:(1)向三次曲線y=x
3-3ax
2+bx (a≠0),對(duì)其進(jìn)行求導(dǎo),求出切線l
1的方程,根據(jù)其過(guò)點(diǎn)(0,0),可以求出x
1;
(2)根據(jù)導(dǎo)數(shù)與直線的斜率的關(guān)系,再求點(diǎn)P
n+1(x
n+1,y
n+1)的切線l
n+1的方程,這個(gè)切線方程過(guò)點(diǎn)P
n(x
n,y
n),代入可得x
n與x
n+1的關(guān)系;
(3)根據(jù)(2)已知的x
n與x
n+1的關(guān)系,遞推關(guān)系,將其湊為等比數(shù)列,其實(shí)n分為奇偶,從而進(jìn)行證明;
解答:解:(1)由y=x
3-3ax
2+bx…①,得y′=3x
2-6ax+b
過(guò)曲線①上的點(diǎn)P(x
1,y
1)的切線l
1的方程是
y-(
-3a
+bx
1)=(3
-6ax
1+b)(x-x
1),(x
1≠0)
由它過(guò)原點(diǎn),有-
+3a
-bx
1=-x
1(3
-6ax
1+b),
2
=3a
(x
1≠0),∴x
1=
;
(2)過(guò)曲線①上點(diǎn)P
n+1(x
n+1,y
n+1)的切線l
n+1的方程是,
y-(
-3a
+bx
n+1)=(3
-6ax
n+1+b)(x-x
n+1),
由l
n+1過(guò)曲線①上點(diǎn)P
n(x
n,y
n),有
-3a
+bx
n-(
-3a
+bx
n+1)=(3
-6ax
n+1+b)(x
n-x
n+1),
∵x
n-x
n+1≠0,以x
n-x
n+1除上式,得
+x
nx
n+1+
-3a(x
n+x
n+1)+b=3x
2n+1-6ax
n+1+b,
+x
nx
n+1-2
-3a(x
n-x
n+1)=0,以x
n-x
n+1除之,得
x
n+2x
n+1-3a=0,
(3)由(2)得
,
∴
.
故數(shù)列{x
n-a}是以x
1-a=
為首項(xiàng),公比為-
的等比數(shù)列,
∴
,
∴
.
∵a>0,
∴當(dāng)n為正偶數(shù)時(shí),
;
當(dāng)n為正奇數(shù)時(shí),
.
點(diǎn)評(píng):此題主要考查數(shù)列與函數(shù)的綜合,難度有些大,還考查導(dǎo)數(shù)與直線斜率的關(guān)系,還考查分類討論的思想,考查的知識(shí)點(diǎn)比較多,是一道難題;