【題目】已知橢圓E的一個(gè)頂點(diǎn)為A(0,﹣1),焦點(diǎn)在x軸上,若橢圓右焦點(diǎn)到直線x﹣y+2 =0的距離為3 (Ⅰ)求橢圓E的方程;
(Ⅱ)設(shè)直線l:y=kx+m(k≠0)與該橢圓交于不同的兩點(diǎn)B,C,若坐標(biāo)原點(diǎn)O到直線l的距離為 ,求△BOC面積的最大值.

【答案】解:(I)設(shè)橢圓的標(biāo)準(zhǔn)方程為: +y2=1.右焦點(diǎn)F(c,0). 則 =3,解得c=
∴a2= =3.
∴橢圓E的方程為 +y2=1.
(II)由坐標(biāo)原點(diǎn)O到直線l的距離為 ,∴ = ,化為:4m2=3k2+3.
設(shè)B(x1 , y1),C(x2 , y2).
聯(lián)立 ,化為:(1+3k2)x2+6kmx+3m2﹣3=0.
△>0,∴x1+x2=﹣ ,x1x2=
∴|BC|= =
= =
∴SBOC= ×|BC|= = ×
= = ,
當(dāng)且僅當(dāng)k= 時(shí)取等號(hào).
∴△BOC面積的最大值是
【解析】(I)設(shè)橢圓的標(biāo)準(zhǔn)方程為: +y2=1.右焦點(diǎn)F(c,0).則 =3,解得c.可得a2=1+c2 . (II)由坐標(biāo)原點(diǎn)O到直線l的距離為 ,可得:4m2=3k2+3.設(shè)B(x1 , y1),C(x2 , y2).直線方程與橢圓方程聯(lián)立化為:(1+3k2)x2+6kmx+3m2﹣3=0.可得|BC|= ,利用SBOC= ×|BC|,及其基本不等式的性質(zhì)即可得出.
【考點(diǎn)精析】通過(guò)靈活運(yùn)用橢圓的標(biāo)準(zhǔn)方程,掌握橢圓標(biāo)準(zhǔn)方程焦點(diǎn)在x軸:,焦點(diǎn)在y軸:即可以解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,三棱柱ABC﹣A1B1C1中,CA=CB,AB=AA1 , ∠BAA1=60°.
(Ⅰ)證明:AB⊥A1C;
(Ⅱ)若平面ABC⊥平面AA1B1B,AB=CB,求直線A1C與平面BB1C1C所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖中的程序框圖的算法思路來(lái)源于我國(guó)古代數(shù)學(xué)名著《九章算術(shù)》中的”更相減損術(shù)“.執(zhí)行該程序框圖,若輸入a,b,i的值分別為6,8,0時(shí),則輸出的i=(
A.3
B.4
C.5
D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓M:x2+y2+2y﹣7=0和點(diǎn)N(0,1),動(dòng)圓P經(jīng)過(guò)點(diǎn)N且與圓M相切,圓心P的軌跡為曲線E.
(1)求曲線E的方程;
(2)點(diǎn)A是曲線E與x軸正半軸的交點(diǎn),點(diǎn)B、C在曲線E上,若直線AB、AC的斜率k1 , k2 , 滿足k1k2=4,求△ABC面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】點(diǎn)A,B,C,D在同一個(gè)球的球面上,AB=BC=1,∠ABC=120°,若四面體ABCD體積的最大值為 ,則這個(gè)球的表面積為(
A.
B.4π
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知點(diǎn)P(2,0),且正方形ABCD內(nèi)接于⊙O:x2+y2=1,M、N分別為邊AB、BC的中點(diǎn).當(dāng)正方形ABCD繞圓心O旋轉(zhuǎn)時(shí), 的取值范圍為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列說(shuō)法正確的是(
A.若命題p:?x0∈R,x02﹣x0+1<0,則¬p:?x?R,x2﹣x+1≥0
B.已知相關(guān)變量(x,y)滿足回歸方程 =2﹣4x,若變量x增加一個(gè)單位,則y平均增加4個(gè)單位
C.命題“若圓C:(x﹣m+1)2+(y﹣m)2=1與兩坐標(biāo)軸都有公共點(diǎn),則實(shí)數(shù)m∈[0,1]為真命題
D.已知隨機(jī)變量X~N(2,σ2),若P(X<a)=0.32,則P(X>4﹣a)=0.68

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】我國(guó)古代數(shù)學(xué)著作《九章算術(shù)》有如下問(wèn)題:“今有人持金出五關(guān),前關(guān)二而稅一,次關(guān)三而稅一,次關(guān)四而稅一,次關(guān)五而稅一,次關(guān)六而稅一,并五關(guān)所稅,適重一斤,問(wèn)本持金幾何”其意思為“今有人持金出五關(guān),第1關(guān)收稅金 ,第2關(guān)收稅金為剩余金的 ,第3關(guān)收稅金為剩余金的 ,第4關(guān)收稅金為剩余金的 ,第5關(guān)收稅金為剩余金的 ,5關(guān)所收稅金之和,恰好重1斤,問(wèn)原來(lái)持金多少?”若將題中“5關(guān)所收稅金之和,恰好重1斤,問(wèn)原來(lái)持金多少?”改成假設(shè)這個(gè)原來(lái)持金為x,按此規(guī)律通過(guò)第8關(guān),則第8關(guān)需收稅金為x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓C: 的短軸長(zhǎng)為2 ,離心率e= ,
(1)求橢圓C的標(biāo)準(zhǔn)方程:
(2)若F1、F2分別是橢圓C的左、右焦點(diǎn),過(guò)F2的直線l與橢圓C交于不同的兩點(diǎn)A、B,求△F1AB的內(nèi)切圓半徑的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案