12.已知實(shí)系數(shù)一元二次方程x2+(1+a)x+a+b+1=0的兩個(gè)實(shí)根為x1,x2,且 0<x1<1<x2,則$\frac{a}$的取值范圍是( 。
A.(-1,$\frac{1}{2}$)B.(-2,$\frac{1}{2}$)C.$(-1,-\frac{1}{2})$D.$(-2,-\frac{1}{2})$

分析 由方程x2+(1+a)x+1+a+b=0的兩根滿足0<x1<1<x2,結(jié)合對(duì)應(yīng)二次函數(shù)性質(zhì)得到 $\left\{\begin{array}{l}{f(0)>0}\\{f(1)<0}\end{array}\right.$,然后在平面直角坐標(biāo)系中,做出滿足條件的可行域,分析$\frac{a}$的幾何意義,然后數(shù)形結(jié)合即可得到結(jié)論.

解答 解:由方程x2+(1+a)x+1+a+b=0的二次項(xiàng)系數(shù)為1>0,
故函數(shù)f(x)=x2+(1+a)x+1+a+b圖象開口方向朝上,
又∵方程x2+(1+a)x+1+a+b=0的兩根滿足0<x1<1<x2,
$\left\{\begin{array}{l}{f(0)>0}\\{f(1)<1}\end{array}\right.$代入方程可得:$\left\{\begin{array}{l}{a+b+1>0}\\{2a+b+3<0}\end{array}\right.$
其對(duì)應(yīng)的平面區(qū)域如下圖陰影示:

$\frac{a}$表示陰影區(qū)域上一點(diǎn)與原點(diǎn)邊線的斜率,
由圖可知$\frac{a}∈(-2,\frac{1}{2})$,
故選:D.

點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是一元二次方程的根的分布與系數(shù)的關(guān)系,三個(gè)二次之間的關(guān)系,線性規(guī)劃,其中由方程x2+(1+a)x+1+a+b=0的兩根滿足0<x1<1<x2,結(jié)合二次函數(shù)零點(diǎn)的關(guān)系可得到不等式,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.某市近10年的煤氣消耗量與使用煤氣戶數(shù)的歷史資料如下:
年份  19971998  1999 2000 20012002  2003 2004 2005 2006
 x用戶(萬戶) 1 1.2 1.6 1.8 2 2.5 3.2 44.2  4.5
 y(百萬立方米) 6 7 9.8 12 12.1 14.5 20 24 25.427.5
(1)畫出數(shù)據(jù)對(duì)應(yīng)的散點(diǎn)圖;
(2)求線性回歸方程,并在散點(diǎn)圖中加上回歸直線;
(3)若市政府下一步再擴(kuò)大5千煤氣用戶,試預(yù)測(cè)該市煤氣消耗量將達(dá)到多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知實(shí)數(shù)x,y滿足$\left\{\begin{array}{l}{x≥0}\\{y≥0}\\{x+2y≤2}\end{array}\right.$,若目標(biāo)函數(shù)z=x-y的最大值為a,最小值為b,則(a-bt)6展開式中t4的系數(shù)為( 。
A.200B.240C.-60D.60

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知$\overrightarrow{a}$=(1-cosθ,1),$\overrightarrow$=(1+cosθ,-sinθ),θ∈R,則$\overrightarrow{a}$$•\overrightarrow$的最小值為$-\frac{1}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.△ABC外接圓的半徑為$\sqrt{2}$,圓心為O,BC=2,且∠ABC為銳角,則$\overrightarrow{OA}$$•\overrightarrow{BC}$的取值范圍是( 。
A.(-2,2$\sqrt{2}$]B.(-2$\sqrt{2}$,2]C.[-2$\sqrt{2}$,2$\sqrt{2}$]D.(-2,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.從1,2,3,4,5,6六個(gè)數(shù)字中任選3個(gè)后得到一個(gè)由這三個(gè)數(shù)組成的最小三位數(shù),則可以得到多少個(gè)不同的這樣的最小3位數(shù)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知以2,3,x為邊長的三角形不是鈍角三角形,則x的取值范圍是[$\sqrt{5}$,$\sqrt{13}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.函數(shù)f(x)=$\frac{cosx•ln(1+x)}{x}$的部分圖象大致為( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.求函數(shù)y=sin2x+2cosxsinx-cos2x的最大值、最小值和周期.

查看答案和解析>>

同步練習(xí)冊(cè)答案