分析 (1)連接BD、DG,證明平面BGD∥平面A1EF,再證明BG∥平面A1EF;
(2)以D為原點(diǎn),DA為x軸,DC為y軸,DD1為z軸,建立空間直角坐標(biāo)系,利用平面A1EF的法向量與平面EFP的法向量互相垂直,即可求出$\frac{CP}{P{C}_{1}}$的值.
解答 解:(1)正方體ABCD-A1B1C1D1中,E、F、G分別是棱AB、AD、D1A1的中點(diǎn),
連接BD、DG,則EF∥BD,
GD∥A1F,
又BD?平面A1EF,EF?平面A1EF,所以BD∥平面A1EF;
同理,GD∥平面A1EF,
且BD∩GD=D,BD?平面BGD,GD?平面BGD,
所以平面BGD∥平面A1EF,
又BG?平面BGD,
所以BG∥平面A1EF;
(2)以D為原點(diǎn),DA為x軸,DC為y軸,DD1為z軸,
建立空間直角坐標(biāo)系,
設(shè)正方體ABCD-A1B1C1D1的棱長(zhǎng)為1,CP=t(0≤t≤1),
A1(1,0,1),A(1,0,0),B(1,1,0),C(0,1,0),
D(0,0,0),E(1,$\frac{1}{2}$,0),F(xiàn)($\frac{1}{2}$,0,0),P(0,1,t);
$\overrightarrow{EF}$=(-$\frac{1}{2}$,-$\frac{1}{2}$,0),$\overrightarrow{{EA}_{1}}$=(0,-$\frac{1}{2}$,1),
設(shè)平面A1EF的法向量為$\overrightarrow{n}$=(x,y,z),
則$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{EF}=0}\\{\overrightarrow{n}•\overrightarrow{{EA}_{1}}=0}\end{array}\right.$,
即$\left\{\begin{array}{l}{-\frac{1}{2}x-\frac{1}{2}y=0}\\{-\frac{1}{2}y+z=0}\end{array}\right.$,
取x=1,得$\overrightarrow{n}$=(1,-1,-$\frac{1}{2}$);
又$\overrightarrow{EP}$=(-1,$\frac{1}{2}$,t),
設(shè)平面EFP的法向量為$\overrightarrow{m}$=(a,b,c),
則$\left\{\begin{array}{l}{\overrightarrow{m}•\overrightarrow{EF}=0}\\{\overrightarrow{m}•\overrightarrow{EP}=0}\end{array}\right.$,
即$\left\{\begin{array}{l}{-\frac{1}{2}a-\frac{1}{2}b=0}\\{-a+\frac{1}{2}b+tc=0}\end{array}\right.$,
取a=1,得$\overrightarrow{m}$=(1,-1,$\frac{3}{2t}$),
又平面A1EF⊥平面EFP,
所以$\overrightarrow{n}$•$\overrightarrow{m}$=1+1-$\frac{3}{4t}$=0,解得t=$\frac{3}{8}$,
所以CP=$\frac{3}{8}$,
即$\frac{CP}{P{C}_{1}}$=$\frac{3}{5}$時(shí),平面A1EF⊥平面EFP.
點(diǎn)評(píng) 本題考查了異面直線(xiàn)垂直的證明,也考查了直線(xiàn)與平面平行的證明以及使二面角為直二面角的線(xiàn)段的比值的求法問(wèn)題,解題時(shí)要認(rèn)真審題,注意向量法的合理運(yùn)用.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 充分不必要條件 | B. | 必要不充分條件 | ||
C. | 充要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{1}{6}$ | B. | $\frac{17}{6}$ | C. | $\frac{8}{3}$ | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 34 | B. | 32 | C. | 20 | D. | 16 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | a<b<c | B. | a<c<b | C. | c<a<b | D. | b<a<c |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{5}{6}$ | B. | $\frac{2}{3}$ | C. | $\frac{5}{9}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (2,+∞) | B. | (1,$\frac{15}{4}$) | C. | (1,2) | D. | (2,$\frac{15}{4}$) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com