1.已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<$\frac{π}{2}$)的 部分圖象如圖所示,f($\frac{π}{2}$)=-$\frac{2}{3}$,則f($\frac{π}{3}$)等于( 。
A.-$\frac{2}{3}$B.-$\frac{1}{2}$C.-$\frac{\sqrt{2}}{4}$D.$\frac{1}{4}$

分析 首先由函數(shù)圖象求出解析式然后求三角函數(shù)值.

解答 解:由圖象得到函數(shù)周期為T=2($\frac{11π}{12}-\frac{7π}{12}$)=$\frac{2}{3}$π=$\frac{2π}{ω}$,所以ω=3,由f($\frac{7π}{12}$)=0得到φ=$\frac{π}{4}$,
由f($\frac{π}{2}$)=-$\frac{2}{3}$,得到Asin($\frac{3π}{2}+\frac{π}{4}$)=$-\frac{2}{3}$,所以A=$\frac{2\sqrt{2}}{3}$,
所以f(x)=$\frac{2\sqrt{2}}{3}$sin(3x+$\frac{π}{4}$),所以f($\frac{π}{3}$)=$\frac{2\sqrt{2}}{3}sin(3×\frac{π}{3}+\frac{π}{4})$=$-\frac{2}{3}$;
故選:A.

點(diǎn)評(píng) 本題考查了三角函數(shù)圖象以及性質(zhì);熟練掌握正弦函數(shù)的圖象和性質(zhì)是解答的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.已知函數(shù)f(x)=4ex(x+1)-k($\frac{2}{3}$x3+2x2),若x=-2是函數(shù)f(x)的唯一一個(gè)極值點(diǎn),則實(shí)數(shù)k的取值范圍是(  )
A.(-2e,e]B.[0,2e]C.(-∞,-e)∪[e,2e]D.(-∞,-e)∪[0,e]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.若曲線$C:y=cosx({x∈({0,\frac{π}{2}}]})$上一點(diǎn)P(x0,cosx0)處的切線與x軸,y軸分別交于A,B兩點(diǎn),則當(dāng)$OA+\frac{1}{OB}$取得最小值時(shí),OB的值為$\frac{π}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.若函數(shù)f(x)=$\frac{1}{2}$x2+2x-3lnx+4a的極小值為-$\frac{3}{2}$,則a的值為( 。
A.-2B.-1C.-4D.-3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知函數(shù)f(x)=(2x-1)2+5x
(1)求f′(x)
(2)求曲線y=f(x)在點(diǎn)(2,19)處的切線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知f(x)=$\frac{lnx}{x+1}$+$\frac{1}{x}$,g(x)=(x+1)•(f(x)-$\frac{1}{x}$).
(1)求曲線f(x)在(1,f(1))處的切線方程;
(2)若方程g(x)=ax有兩個(gè)不同的根x1,x2,證明:x1•x2>e2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.已知函數(shù)f(x)=$\left\{\begin{array}{l}{g(x),x<0}\\{a-lo{g}_{2}(x+2),x≥0}\end{array}\right.$是奇函數(shù),則f(x)>-1的解集為( 。
A.(-2,0]∪(2,+∞)B.(-2,+∞)C.(-∞,-2)∪(0,2)D.(-∞,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.下列命題中,正確的是(  )
①?x∈R,2x>3x;②“x≠3”是“|x|≠3”成立的充分條件;③空間中若直線l若平行于平面α,則α內(nèi)所有直線均與l是異面直線;④空間中有三個(gè)角是直角的四邊形不一定是平面圖形.
A.①③B.①④C.②④D.②③

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.如圖,已知A、B分別是函數(shù)f(x)=$\sqrt{3}$cos(ωx-$\frac{π}{2}$)(ω>0)在y軸右側(cè)圖象上的第一個(gè)最高點(diǎn)和第一個(gè)最低點(diǎn),且∠AOB=$\frac{π}{2}$,則為了得到函數(shù)y=$\sqrt{3}$sin($\frac{π}{2}$x+$\frac{π}{3}$)的圖象,只需把函數(shù)y=f(x)的圖象(  )
A.向左平行移動(dòng)$\frac{π}{3}$個(gè)單位長(zhǎng)度B.向左平行移動(dòng)$\frac{1}{3}$個(gè)單位長(zhǎng)度
C.向左平行移動(dòng)$\frac{2}{3}$個(gè)單位長(zhǎng)度D.向左平行移動(dòng)$\frac{2π}{3}$個(gè)單位長(zhǎng)度

查看答案和解析>>

同步練習(xí)冊(cè)答案