17.函數(shù)y=3-4sin x-cos2x的最大值7和最小值-1.

分析 利用同角三角函數(shù)的基本關(guān)系化簡函數(shù)的解析式,再利用正弦函數(shù)的值域、二次函數(shù)的性質(zhì),求得它的最值.

解答 解:∵函數(shù)y=3-4sin x-cos2x=2-4sinx+sin2x=(sinx-2)2-2,sinx∈[-1,1],
故當(dāng)sinx=-1時,函數(shù)y取得最大值為7,當(dāng)sinx=1時,函數(shù)y取得的最小值-1,
故答案為:7;-1.

點評 本題主要考查同角三角函數(shù)的基本關(guān)系,正弦函數(shù)的值域,二次函數(shù)的性質(zhì)應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.下列四個命題中的真命題是( 。
A.經(jīng)過定點P0(x0,y0)的直線都可以用方程y-y0=k(x-x0)表示
B.經(jīng)過任意兩個不同點P1(x1,y1)、P2(x2,y2)的直線都可以用方程(y-y1)(x2-x1)=(x-x1)(y2-y1)表示
C.不經(jīng)過原點的直線都可以用方程$\frac{x}{a}+\frac{y}=1$表示
D.經(jīng)過定點A(0,b)的直線都可以用方程y=kx+b表示

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.若函數(shù)$f(x)=\left\{\begin{array}{l}1-{x^2},x<0\\{x^2}-x-1,x>0\end{array}\right.$,則f(-1)+f(2)的值為( 。
A.5B.-1C.1D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.觀察如表數(shù)表的規(guī)律(仿楊輝三角:下一行的數(shù)等于上一行肩上相鄰兩數(shù)的和):

該數(shù)表最后一行只有一個數(shù),則這個數(shù)是22015×2018.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.直線(k+1)x-(2k-1)y+3k=0恒過定點(-1,1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知函數(shù)f(x)=lnx,x1,x2∈(0,$\frac{1}{e}$),且x1<x2,則下列結(jié)論中正確的是( 。
A.(x1-x2)[f(x1)-f(x2)]<0B.f($\frac{{x}_{1}+{x}_{2}}{2}$)<f($\frac{f({x}_{1})+f({x}_{2})}{2}$)
C.x1f(x2)>x2f(x1D.x2f(x2)>x1f(x1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知數(shù)列{an}的前n項和Sn=n2(n≥2)并且a1=1.
(1)求a2,a3;
(2)求an

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知函數(shù)f(x)=log${\;}_{\frac{1}{2}}$(x+a),g(x)=x2+4x-2,函數(shù)h(x)=$\left\{\begin{array}{l}{f(x),f(x)≥g(x)}\\{g(x),f(x)<g(x)}\end{array}\right.$,若函數(shù)h(x)的最小值為-2,則a=( 。
A.0B.2C.4D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.若向量$\overrightarrow{a}$=(ex,|cosx|),$\overrightarrow$=(1,2sinx),則函數(shù)f(x)=$\overrightarrow{a}$•$\overrightarrow$在區(qū)間[-7,0]上的零點個數(shù)為5.

查看答案和解析>>

同步練習(xí)冊答案