【題目】中心在原點(diǎn),焦點(diǎn)在x軸上的一橢圓與一雙曲線(xiàn)有共同的焦點(diǎn)F1F2,且|F1F2|,橢圓的長(zhǎng)半軸與雙曲線(xiàn)實(shí)半軸之差為4,離心率之比為3∶7.

(1)求這兩曲線(xiàn)的方程;

(2)若P為這兩曲線(xiàn)的一個(gè)交點(diǎn),求cos∠F1PF2的值.

【答案】(1);(2)

【解析】試題分析:1設(shè)橢圓長(zhǎng)、短半軸長(zhǎng)分別為雙曲線(xiàn)半實(shí)、虛軸長(zhǎng)分別為,列出,解出參數(shù)的值,即可得出橢圓與雙曲線(xiàn)的方程;(2不妨設(shè)分別為左、右焦點(diǎn), 是第一象限的一個(gè)交點(diǎn),則, 再利用余弦定理得出,求值即可.

試題解析(1)由題意知,半焦距,設(shè)橢圓長(zhǎng)半軸為,則雙曲線(xiàn)實(shí)半軸,離心率之比為,∴,∴橢圓的短半軸等于,雙曲線(xiàn)虛半軸的長(zhǎng)為,∴橢圓和雙曲線(xiàn)的方程分別為: .
(2)由橢圓的定義得: ,由雙曲線(xiàn)的定義得: ,∴中,一個(gè)是10,另一個(gè)是 4,不妨令 ,又,三角形中,利用余弦定理得: ,∴

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知?jiǎng)狱c(diǎn) P 與定點(diǎn)的距離和它到定直線(xiàn) x 4 的距離的比是1: 2 ,記動(dòng)點(diǎn) P 的軌跡為曲線(xiàn) E.

(1)求曲線(xiàn) E 的方程;

(2)設(shè) A 是曲線(xiàn) E 上的一個(gè)點(diǎn),直線(xiàn) AF 交曲線(xiàn) E 于另一點(diǎn) B,以 AB 為邊作一個(gè)平行四邊形,頂點(diǎn) A、B、C、D 都在軌跡 E 上,判斷平行四邊形 ABCD 能否為菱形,并說(shuō)明理由;

(3)當(dāng)平行四邊形 ABCD 的面積取到最大值時(shí),判斷它的形狀,并求出其最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)= (m∈Z)為偶函數(shù),且在(0,+∞)上為增函數(shù).
(1)求m的值,并確定f(x)的解析式;
(2)若g(x)=loga[f(x)﹣ax](a>0且a≠1),是否存在實(shí)數(shù)a,使g(x)在區(qū)間[2,3]上的最大值為2,若存在,求出a的值,若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的一個(gè)焦點(diǎn)與拋物線(xiàn)的焦點(diǎn)重合,點(diǎn)

)求 的方程;

)直線(xiàn)不過(guò)原點(diǎn)O且不平行于坐標(biāo)軸,有兩個(gè)交點(diǎn),線(xiàn)段的中點(diǎn)為,證明:的斜率與直線(xiàn)的斜率的乘積為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】計(jì)算下列各式的值:
(1) ﹣( 0+( 0.5+ ;
(2)lg500+lg lg64+50(lg2+lg5)2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(Ⅰ)若存在使得成立,求實(shí)數(shù)的取值范圍;

(Ⅱ)求證:當(dāng)時(shí),在(1)的條件下, 成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義在D上的函數(shù)f(x),如果滿(mǎn)足:對(duì)任意x∈D,存在常數(shù)M≥0,都有|f(x)|≤M成立,則稱(chēng)f(x)是D上的有界函數(shù),其中M稱(chēng)為函數(shù)f(x)的一個(gè)上界.已知函數(shù)f(x)=1+a( x+( x , 若函數(shù)f(x)在[﹣2,1]上是以3為上界的有界函數(shù),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在三棱柱中, ,頂點(diǎn)在底面 上的射影恰為點(diǎn) ,且.

1)求棱 所成的角的大。

2)在棱 上確定一點(diǎn),使,并求出二面角的平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某港口船舶停靠的方案是先到先停.

(1)若甲乙兩艘船同時(shí)到達(dá)港口,雙方約定各派一名代表猜拳:從1,2,3,4,5中各隨機(jī)選一個(gè)數(shù),若兩數(shù)之和為偶數(shù),則甲先?;若兩數(shù)之和為奇數(shù),則乙先?,這種規(guī)則是否公平?請(qǐng)說(shuō)明理由.

(2)根據(jù)以往經(jīng)驗(yàn),甲船將于早上到達(dá),乙船將于早上到達(dá),請(qǐng)應(yīng)用隨機(jī)模擬的方法求甲船先?康母怕剩S機(jī)數(shù)模擬實(shí)驗(yàn)數(shù)據(jù)參考如下:記, 都是之間的均勻隨機(jī)數(shù),用計(jì)算機(jī)做了100次試驗(yàn),得到的結(jié)果有12次滿(mǎn)足,有6次滿(mǎn)足

查看答案和解析>>

同步練習(xí)冊(cè)答案