【題目】已知函數(shù)f(x)= (m∈Z)為偶函數(shù),且在(0,+∞)上為增函數(shù).
(1)求m的值,并確定f(x)的解析式;
(2)若g(x)=loga[f(x)﹣ax](a>0且a≠1),是否存在實數(shù)a,使g(x)在區(qū)間[2,3]上的最大值為2,若存在,求出a的值,若不存在,請說明理由.

【答案】
(1)解:由函數(shù) 在(0,+∞)上為增函數(shù),

得到﹣2m2+m+3>0

解得 ,又因為m∈Z,

所以m=0或1.

又因為函數(shù)f(x)是偶函數(shù)

當m=0時,f(x)=x3,不滿足f(x)為偶函數(shù);

當m=1時,f(x)=x2,滿足f(x)為偶函數(shù);

所以f(x)=x2


(2)解: ,令h(x)=x2﹣ax,

由h(x)>0得:x∈(﹣∞,0)∪(a,+∞)

∵g(x)在[2,3]上有定義,

∴0<a<2且a≠1,∴h(x)=x2﹣ax在[2,3]上為增函數(shù).

當1<a<2時,g(x)max=g(3)=loga(9﹣3a)=2,

因為1<a<2,所以

當0<a<1時,g(x)max=g(2)=loga(4﹣2a)=2,

∴a2+2a﹣4=0,解得 ,

∵0<a<1,∴此種情況不存在,

綜上,存在實數(shù) ,使g(x)在區(qū)間[2,3]上的最大值為2


【解析】(1)由冪函數(shù)在(0,+∞)上為增函數(shù)且m∈Z求出m的值,然后根據(jù)函數(shù)式偶函數(shù)進一步確定m的值,則函數(shù)的解析式可求;(2)把函數(shù)f(x)的解析式代入g(x)=loga[f(x)﹣ax],求出函數(shù)g(x)的定義域,由函數(shù)g(x)在區(qū)間[2,3]上有意義確定出a的范圍,然后分類討論使g(x)在區(qū)間[2,3]上的最大值為2的a的值.
【考點精析】利用復合函數(shù)單調性的判斷方法和奇偶性與單調性的綜合對題目進行判斷即可得到答案,需要熟知復合函數(shù)f[g(x)]的單調性與構成它的函數(shù)u=g(x),y=f(u)的單調性密切相關,其規(guī)律:“同增異減”;奇函數(shù)在關于原點對稱的區(qū)間上有相同的單調性;偶函數(shù)在關于原點對稱的區(qū)間上有相反的單調性.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓 的離心率為,以原點為圓心,橢圓C的短半軸長為半徑的圓與直線相切.、是橢圓的左、右頂點,直線點且與軸垂直.

(1)求橢圓的標準方程;

(2)設是橢圓上異于、的任意一點,作軸于點,延長到點使得,連接并延長交直線于點為線段的中點,判斷直線與以為直徑的圓的位置關系,并證明你的結論.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(本小題滿分12分)如圖,在四棱錐中,底面是正方形,側面底面,且,設分別為的中點.

(1)求證:平面∥平面;

(2)求證:平面平面.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知f(x)是定義在(﹣∞,+∞)上的偶函數(shù),且在(﹣∞,0]上是增函數(shù),設a=f(log47),b=f(log 3),c=f(21.6),則a,b,c的大小關系是(
A.c<a<b
B.c<b<a
C.b<c<a
D.a<b<c

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知集合P={y|y=( x , x>0},Q={x|y=lg(2x﹣x2)},則(RP)∩Q為(
A.[1,2)
B.(1,+∞)
C.[2,+∞)
D.[1,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】中, 成等差數(shù)列是的( )

A. 充分不必要條件 B. 必要不充分條件 C. 充要條件 D. 既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】拋物線的頂點為坐標原點O,焦點F在軸正半軸上,準線與圓相切.

)求拋物線的方程;

)已知直線和拋物線交于點,命題若直線過定點(0,1),則 ,

請判斷命題的真假,并證明.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】中心在原點,焦點在x軸上的一橢圓與一雙曲線有共同的焦點F1,F2,且|F1F2|,橢圓的長半軸與雙曲線實半軸之差為4,離心率之比為3∶7.

(1)求這兩曲線的方程;

(2)若P為這兩曲線的一個交點,求cos∠F1PF2的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知命題p:實數(shù)x滿足x2-5ax+4a2<0,其中a>0,命題q:實數(shù)x滿足

(1)若a=1,且pq為真,求實數(shù)x的取值范圍;

(2)若¬p是¬q的充分不必要條件,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習冊答案