4.若$\frac{{{{({1-i})}^2}}}{z}$=1+i,i為虛數(shù)單位,則z的虛部為-1.

分析 直接由$\frac{{{{({1-i})}^2}}}{z}$=1+i,得$z=\frac{(1-i)^{2}}{1+i}$,然后利用復(fù)數(shù)代數(shù)形式的乘除運算化簡,則z的虛部可求.

解答 解:由$\frac{{{{({1-i})}^2}}}{z}$=1+i,
得$z=\frac{(1-i)^{2}}{1+i}$=$\frac{-2i}{1+i}=\frac{-2i(1-i)}{(1+i)(1-i)}=-i(1-i)=-1-i$,
則z的虛部為:-1.
故答案為:-1.

點評 本題考查了復(fù)數(shù)代數(shù)形式的乘除運算,考查了復(fù)數(shù)的基本概念,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.函數(shù)y=x3+ax+b在(-1,1)上為單調(diào)遞減函數(shù),在(1,+∞)上為單調(diào)遞增函數(shù),則( 。
A.a=1,b=1B.a=1,b∈RC.a=-3,b=3D.a=-3,b∈R

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知函數(shù)f(x)=x2+ax-lnx,a∈R.
(1)若函數(shù)f(x)在[1,2]上是減函數(shù),求實數(shù)a的取值范圍;
(2)令g(x)=f(x)-x2,是否存在實數(shù)a,當(dāng)x∈(0,e](e是自然常數(shù))時,函數(shù)g(x)的最小值是3,若存在,求出a的值;若不存在,說明理由;
(3)求證:當(dāng)x∈(0,e]時,e2x2-$\frac{5}{2}$x>(x+1)lnx.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知函數(shù)f(x)=a$\sqrt{x}$+b(lnx+1)+1的圖象在x=1處的切線方程為x+2y-3=0.
(Ⅰ)求a,b的值;
(Ⅱ)證明:當(dāng)x>0時,恒有$\sqrt{x}$>lnx;
(Ⅲ)當(dāng)x∈(0,+∞)時,f(x)≥(m-1)x+$\sqrt{x}$-1,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知函數(shù)f(x)=lnx-mx+m,m∈R.
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若f(x)≤0在x∈(0,+∞)上恒成立,求實數(shù)m的值;
(3)在(2)的條件下,對任意的0<a<b,求證:$\frac{f(b)-f(a)}{b-a}$<$\frac{1}{a}$-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.一個幾何體的三視圖如圖所示(單位:m),則該幾何體的表面積為$12π+2\sqrt{2}π$m2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.某城市缺水問題比較突出,為了制定節(jié)水管理辦法,對全市居民某年的月均用水量進(jìn)行了抽樣調(diào)查,其中4位居民的月均用水量分別為xi(i=1,2,3,4)(單位:立方米).根據(jù)如圖所示的程序框圖,若知x1,x2,x3,x4分別為1,1.5,1.5,3,則輸出的結(jié)果S為$\frac{7}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知|$\overrightarrow{a}$|=1,|$\overrightarrow$|=$\sqrt{2}$,
(1)若$\overrightarrow{a}$、$\overrightarrow$的夾角為60°,求|$\overrightarrow{a}$+$\overrightarrow$|;
(2)若$\overrightarrow{a}$-$\overrightarrow$與$\overrightarrow{a}$垂直,求$\overrightarrow{a}$與$\overrightarrow$的夾角.
(3)若$\overrightarrow{a}$∥$\overrightarrow$,求$\overrightarrow{a}$•$\overrightarrow$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知數(shù)列{an}為a0,a1,a2,a3,…,an(n∈N),bn=$\sum_{i=0}^{n}$ai=a0+a1+a2+a3+…+an,i∈N.若數(shù)列{an}為等差數(shù)列an=2n(n∈N),則$\sum_{i=1}^{n}$(bi${C}_{n}^{i}$)=(n2+3n)•2n-2

查看答案和解析>>

同步練習(xí)冊答案