已知f(n)=1+2+3+…+(n-1)+n+(n-1)+…+3+2+1,對任意n∈N*,f(n+1)-f(n)=
 
考點:數(shù)列的求和,數(shù)列的函數(shù)特性
專題:點列、遞歸數(shù)列與數(shù)學(xué)歸納法
分析:利用倒序相加法求出f(n),進一步求得f(n+1),與f(n)作差后得答案.
解答: 解:∵f(n)=1+2+3+…+(n-1)+n+(n-1)+…+3+2+1
=2[1+2+3+…+(n-1)]+n
=2×
(1+n-1)(n-1)
2
+n=n2
∴f(n+1)-f(n)=(n+1)2-n2=2n+1.
故答案為:2n+1.
點評:本題考查倒序相加法求數(shù)列的和,考查了學(xué)生觀察問題和分析問題的能力,是中低檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖過拋物線y2=4x焦點F的直線與拋物線交于A,B兩點,直線AO交拋物線準(zhǔn)線于C點.
(1)求證:BC⊥y軸;
(2)求|AB|+|BC|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知橢圓C:
x2
4
+
y2
2
=1
,Q是橢圓的右準(zhǔn)線l上一動點,直線OQ交橢圓C于A、B兩點,圓O:x2+y2=4,QM、QN是圓O的兩條切線,M、N為切點.
(1)求證:直線MN恒過橢圓C的右焦點F;
(2)若點P是橢圓上任意一點,且直線AP、BP的斜率都存在,分別記為k1,k2,探究k1•k2是否為定值?說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,為了測量點A與河流對岸點B之間的距離,在點A同側(cè)選取點C,若測得AC=40米,∠BAC=75°,∠ACB=60°,則點A與點B之間的距離等于
 
米.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

2
0
(3x2-k)dx=10,則k=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若復(fù)數(shù)z=i,則z100+z50的值等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

e1
e2
為兩個不共線的向量,且
AB
=2
e1
+k
e2
,
OB
=
e1
+2
e2
,
OD
=2
e1
-
e2
,若A、B、D三點共線,則k=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知∠ABC=60°,P為∠ABC內(nèi)一定點,且點P到邊AB,BC的距離分別為1,2.則P點到頂點B的距離為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

lim
n→∞
1+2+3+…+n
2n2-3
=
 

查看答案和解析>>

同步練習(xí)冊答案