分析 根據(jù)特稱命題的否定是全稱命題求出命題的否定,然后根據(jù)命題為真命題,結(jié)合一元二次不等式恒成立問題進行求解即可.
解答 解:∵命題p:?x0∈R,ax${\;}_{0}^{2}$+2ax0+1≤0.
∴¬p:?x∈R,ax2+2ax+1>0,
∵命題¬p是真命題,
∴當(dāng)a=0時,不等式等價為1>0,滿足條件.
當(dāng)a≠0,要使不等式恒成立,
則滿足$\left\{\begin{array}{l}{a>0}\\{△=4{a}^{2}-4a<0}\end{array}\right.$,即$\left\{\begin{array}{l}{a>0}\\{0<a<1}\end{array}\right.$,得0<a<1,
綜上0≤a<1,
故答案為:[0,1).
點評 本題主要考查命題真假的應(yīng)用,根據(jù)特稱命題的否定是全稱命題求出命題的否定,結(jié)合命題為真命題建立不等式關(guān)系是解決本題的關(guān)鍵.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2$\sqrt{2}$ | B. | $\sqrt{2}$ | C. | 2 | D. | 1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{4}$ | B. | $\frac{3}{4}$ | C. | $\frac{{\sqrt{11}}}{4}$ | D. | $\frac{{\sqrt{15}}}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | af(a)<bf(b) | B. | af(b)<bf(a) | C. | af(a)>bf(b) | D. | af(b)>bf(a) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -i | B. | -1 | C. | i | D. | 1 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com