把正方形ABCD沿對(duì)角線AC折起,當(dāng)三棱錐B-ACD的體積最大時(shí),直線BD與平面ABC所成角的大小為( 。
分析:欲使得三棱錐體積最大,因?yàn)槿忮F底面積一定,只須三棱錐的高最大即可,即當(dāng)平面BAC⊥平面DAC時(shí),三棱錐體積最大,從而可得直線BD和平面ABC所成的角.
解答:解:如圖,當(dāng)平面BAC⊥平面DAC時(shí),三棱錐體積最大
取AC的中點(diǎn)E,則BE⊥平面DAC,
故直線BD和平面ABC所成的角為∠DBE
∵BE=ED
∴∠DBE=45°
故選B.
點(diǎn)評(píng):本題考查空間中直線與平面之間的位置關(guān)系,考查空間想象能力、運(yùn)算能力和推理論證能力,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

把正方形ABCD沿對(duì)角線AC折起,當(dāng)以A、B、C、D四點(diǎn)為頂點(diǎn)的三棱錐體積最大時(shí),直線BD和平面ABC所成的角的大小為( 。
A、90°B、60°C、45°D、30°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

8、如圖把正方形ABCD沿對(duì)角線BD折成直二面角,對(duì)于下面結(jié)論:
①AC⊥BD;
②CD⊥平面ABC;
③AB與BC成60°角;
④AB與平面BCD成45°角.
則其中正確的結(jié)論的序號(hào)為
①③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

把正方形ABCD沿對(duì)角線BD折成直二面角,則AB與平面BCD所成角為
45°
45°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

把正方形ABCD沿對(duì)角線AC折起,當(dāng)以A,B,C,D四點(diǎn)為頂點(diǎn)的三棱錐體積最大時(shí),直線BD和平面ABC所成的角的正弦值為
2
2
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2004•黃埔區(qū)一模)把正方形ABCD沿對(duì)角線BD折疊后得到四面體ABCD,則AC與平面BCD所成角不可能是( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案