在平面直角坐標(biāo)系中,定義d(P,Q)=|x1-x2|+|y1-y2|為兩點(diǎn)P(x1,y1),Q(x2,y2)之間的“折線距離”.則坐標(biāo)原點(diǎn)O與直線上一點(diǎn)的“折線距離”的最小值是    ;圓x2+y2=1上一點(diǎn)與直線上一點(diǎn)的“折線距離”的最小值是   
【答案】分析:根據(jù)新定義直接求出d(A,O);求出過O與直線 的點(diǎn)坐標(biāo)的“折線距離”的表達(dá)式,然后求出最小值;F為圓上任意一點(diǎn),過P、F分別作x、y軸的垂線交于點(diǎn)Q,延長FQ交直線于點(diǎn)Q',將F看作定點(diǎn),由問題1知P與F的最小“折線距離”為|FQ'|,即可求出結(jié)果.
解答:解:如圖1,直線與兩軸的交點(diǎn)分別為,設(shè)P(x,y)
為直線上任意一點(diǎn),作PQ⊥x軸于Q,于是有|PQ|=2|QM|,
所以d=|OQ|+|QP|≥|OQ|+|QM|≥|OM|,即當(dāng)P與M重合時(shí),
如圖2,設(shè)F為圓上任意一點(diǎn),過P、F分別作x、y軸的垂線交于點(diǎn)Q,延長FQ交直線于點(diǎn)Q',將F看作定點(diǎn),由問題1知P與F的最小“折線距離”為|FQ'|,設(shè)F的縱坐標(biāo)為m,則,顯然只需要考慮m∈[0,1],設(shè),,其中,,所以當(dāng),時(shí),

故答案為:
點(diǎn)評(píng):本題是中檔題,考查新定義,利用新定義求出函數(shù)的最小值問題,考查計(jì)算能力,對(duì)新定義的理解和靈活運(yùn)應(yīng)是解好本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系xOy中,以O(shè)為極點(diǎn),x正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為:pcos(θ-
π3
)=1
,M,N分別為曲線C與x軸,y軸的交點(diǎn),則MN的中點(diǎn)P在平面直角坐標(biāo)系中的坐標(biāo)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系中,A(3,0)、B(0,3)、C(cosθ,sinθ),θ∈(
π
2
,
2
)
,且|
AC
|=|
BC
|

(1)求角θ的值;
(2)設(shè)α>0,0<β<
π
2
,且α+β=
2
3
θ
,求y=2-sin2α-cos2β的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系中,如果x與y都是整數(shù),就稱點(diǎn)(x,y)為整點(diǎn),下列命題中正確的是
 
(寫出所有正確命題的編號(hào)).
①存在這樣的直線,既不與坐標(biāo)軸平行又不經(jīng)過任何整點(diǎn)
②如果k與b都是無理數(shù),則直線y=kx+b不經(jīng)過任何整點(diǎn)
③直線l經(jīng)過無窮多個(gè)整點(diǎn),當(dāng)且僅當(dāng)l經(jīng)過兩個(gè)不同的整點(diǎn)
④直線y=kx+b經(jīng)過無窮多個(gè)整點(diǎn)的充分必要條件是:k與b都是有理數(shù)
⑤存在恰經(jīng)過一個(gè)整點(diǎn)的直線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系中,下列函數(shù)圖象關(guān)于原點(diǎn)對(duì)稱的是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系中,以點(diǎn)(1,0)為圓心,r為半徑作圓,依次與拋物線y2=x交于A、B、C、D四點(diǎn),若AC與BD的交點(diǎn)F恰好為拋物線的焦點(diǎn),則r=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案