日需求量n | 8 | 9 | 10 | 11 | 12 |
頻數(shù) | 9 | 11 | 15 | 10 | 5 |
分析 (Ⅰ)根據(jù)題意分段求解得出當1≤n≤10時,y利潤,當n>10時,y利潤,
(Ⅱ)①50天內(nèi)有9天獲得的利潤380元,有11天獲得的利潤為440元,有15天獲得利潤為500元,有10天獲得的利潤為530元,有5天獲得的利潤為560,求其平均數(shù)即可.
②當天的利潤在區(qū)間[400,500]有11+15+10天,即可求解概率.
解答 解:(Ⅰ)當日需求量n≥10時,利潤為y=50×10+(n-10)×30=30n+200;
當需求量n<10時,利潤y=50×n-(10-n)×10=60n-100.
所以利潤y與日需求量n的函數(shù)關系式為:$y=\left\{{\begin{array}{l}{30n+200,n≥10,n∈N}\\{60n-100,n<10,n∈N}\end{array}}\right.$
(Ⅱ)50天內(nèi)有9天獲得的利潤380元,有11天獲得的利潤為440元,有15天獲得利潤為500元,有10天獲得的利潤為530元,有5天獲得的利潤為560元.
①$\frac{380×9+440×11+500×15+530×10+560×5}{50}=477.2$
②若利潤在區(qū)間[400,550]內(nèi)的概率為$P=\frac{11+15+10}{50}=\frac{18}{25}$
點評 本題考查了運用概率知識求解實際問題的利潤問題,仔細閱讀題意,得出有用的數(shù)據(jù),理清關系,正確代入數(shù)據(jù)即可.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (-∞,0) | B. | (-∞,2) | C. | (0,+∞) | D. | (2,+∞) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{3\sqrt{3}}{4}$ | B. | $\frac{3\sqrt{3}}{2}$ | C. | 2$\sqrt{3}$ | D. | 3$\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (-∞,2) | B. | (2,+∞) | C. | (-∞,1)∪(1,2) | D. | (-∞,1)∪(2,+∞) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com