10.定義域為R的可導函數(shù)y=f(x)的導函數(shù)f′(x),滿足f(x)>f′(x),且f(0)=2,則不等式f(x)<2ex的解集為(  )
A.(-∞,0)B.(-∞,2)C.(0,+∞)D.(2,+∞)

分析 構(gòu)造函數(shù)g(x)=$\frac{f(x)}{{e}^{x}}$,通過導函數(shù)判斷函數(shù)的單調(diào)性,利用單調(diào)性得出x的范圍.

解答 設g(x)=$\frac{f(x)}{{e}^{x}}$,
則g'(x)=$\frac{f'(x)-f(x)}{{e}^{x}}$,
∵f(x)>f′(x),
∴g'(x)<0,即函數(shù)g(x)單調(diào)遞減.
∵f(0)=2,
∴g(0)=f(0)=2,
則不等式等價于g(x)<g(0),
∵函數(shù)g(x)單調(diào)遞減.
∴x>0,
∴不等式的解集為(0,+∞),
故選:C.

點評 考查了函數(shù)的構(gòu)造和導函數(shù)判斷函數(shù)的單調(diào)性.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

20.設橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0),過點Q($\sqrt{2}$,1),右焦點F($\sqrt{2}$,0),
(Ⅰ)求橢圓C的方程;
(Ⅱ)設直線l:y=k(x-1)(k>0)分別交x軸,y軸于C,D兩點,且與橢圓C交于M,N兩點,若$\overrightarrow{CN}=\overrightarrow{MD}$,求k值,并求出弦長|MN|.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.已知△ABC內(nèi)角A,B,C的對邊分別是a,b,c,且滿足a($\sqrt{3}$sinC+cosC)=b+c.
(I) 求角A的大;
(Ⅱ)已知函數(shù)f(x)=sin(ωx+A)的最小正周期為π,求f(x)的減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.若(1-2x)2016=a0+a1x+a2x2+…+a2016x2016,(x∈R),則(a0+a1)+(a0+a2)+(a0+a3)+…+(a0+a2016)的值是( 。
A.2018B.2017C.2016D.2015

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.已知數(shù)列{an},a1=1,且an-1-an-1an-an=0(n≥2,n∈N*),記bn=a2n-1a2n+1,數(shù)列{bn}的前n項和為Tn,則滿足不等式Tn<$\frac{8}{17}$成立的最大正整數(shù)n為7.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.已知總體的各個個體的值由小到大依次為1,3,4,8,a,c,11,23,53,86,且總體的中位數(shù)為10,則 cos $\frac{a+c}{3}$ π 的值為-$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.在△ABC中,a,b,c分別是角A,B,C的對邊,且a+c=2b.
(I)求角B的取值范圍;
(Ⅱ)若A-C=$\frac{π}{3}$,求sinB.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.某商店計劃每天購進某商品若干件,商店每銷售1件該商品可獲利50元.若供大于求,剩余商品全部退回,但每件商品虧損10元;若供不應求,則從外部調(diào)劑,此時每件調(diào)劑商品可獲利30元.
(Ⅰ)若商店一天購進該商品10件,求當天的利潤y(單位:元)關于當天需求量n(單位:件,n∈N)的函數(shù)解析式;
(Ⅱ)商店記錄了50天該商品的日需求量(單位:件),整理得如表:
日需求量n89101112
頻數(shù)91115105
①假設該店在這50天內(nèi)每天購進10件該商品,求這50天的日利潤(單位:元)的平均數(shù);
②若該店一天購進10件該商品,以50天記錄的各需求量的頻率作為各需求量發(fā)生的概率,求當天的利潤在區(qū)間[400,550]內(nèi)的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.過雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左焦點F(-c,0)(c>0)作圓x2+y2=$\frac{{a}^{2}}{9}$的切線,切點為E,延長FE交雙曲線右支與點P,O為坐標原點.若$\overrightarrow{OE}$=$\frac{1}{2}$($\overrightarrow{OF}$+$\overrightarrow{OP}$),則雙曲線的離心率為( 。
A.$\sqrt{10}$B.$\frac{\sqrt{17}}{3}$C.$\frac{\sqrt{17}}{2}$D.$\frac{\sqrt{10}}{2}$

查看答案和解析>>

同步練習冊答案