分析 (1)由A(0,1)到焦點的距離為$\sqrt{3}$,可得a=$\sqrt{3}$,c=$\sqrt{{a}^{2}-^{2}}$,即可得出e=$\frac{c}{a}$.
(2)不妨設AB斜率k>0,則AB:y=kx+1,AC:y=$-\frac{1}{k}x+1$.分別與橢圓方程聯(lián)立可得:${x_B}=-\frac{{2{a^2}k}}{{1+{a^2}{k^2}}}$,${x_C}=\frac{{2{a^2}k}}{{{k^2}+{a^2}}}$,|AB|=$\sqrt{{x}_{B}^{2}+({y}_{B}-1)^{2}}$=$\frac{2{a}^{2}k\sqrt{1+{k}^{2}}}{1+{a}^{2}{k}^{2}}$,|AC|=$\frac{2{a}^{2}\sqrt{1+{k}^{2}}}{{a}^{2}+{k}^{2}}$.S=$\frac{1}{2}$|AB||AC|=2a4×$\frac{k+\frac{1}{k}}{{a}^{2}(k+\frac{1}{k})^{2}+({a}^{2}-1)^{2}}$,令$k+\frac{1}{k}$=t≥2,通過換元利用基本不等式的性質(zhì)即可得出.
解答 解:(1)∵A(0,1)到焦點的距離為$\sqrt{3}$,∴a=$\sqrt{3}$,c=$\sqrt{{a}^{2}-^{2}}$=$\sqrt{2}$,e=$\frac{c}{a}$=$\frac{\sqrt{2}}{\sqrt{3}}$=$\frac{{\sqrt{6}}}{3}$.
(2)不妨設AB斜率k>0,則AB:y=kx+1,AC:y=$-\frac{1}{k}x+1$.
由$\left\{{\begin{array}{l}{y=kx+1}\\{\frac{x^2}{a^2}+{y^2}=1}\end{array}}\right.$,得(1+a2k2)x2+2a2kx=0,
解得${x_B}=-\frac{{2{a^2}k}}{{1+{a^2}{k^2}}}$,同理${x_C}=\frac{{2{a^2}k}}{{{k^2}+{a^2}}}$,
|AB|=$\sqrt{{x}_{B}^{2}+({y}_{B}-1)^{2}}$=$\frac{2{a}^{2}k\sqrt{1+{k}^{2}}}{1+{a}^{2}{k}^{2}}$,同理可得:|AC|=$\frac{2{a}^{2}\sqrt{1+{k}^{2}}}{{a}^{2}+{k}^{2}}$.
S=$\frac{1}{2}$|AB||AC|=2a4×$\frac{k(1+{k}^{2})}{{a}^{2}{k}^{4}+{a}^{4}{k}^{2}+{k}^{2}+{a}^{2}}$=2a4×$\frac{k+\frac{1}{k}}{{a}^{2}(k+\frac{1}{k})^{2}+({a}^{2}-1)^{2}}$,
令$k+\frac{1}{k}$=t≥2,
則S=2a4×$\frac{t}{{a}^{2}{t}^{2}+({a}^{2}-1)^{2}}$=$\frac{2{a}^{4}}{{a}^{2}t+\frac{({a}^{2}-1)^{2}}{t}}$≤$\frac{{a}^{3}}{{a}^{2}-1}$,當且僅當t=$\frac{{a}^{2}-1}{a}$≥2,即a$≥1+\sqrt{2}$時取等號.
由$\frac{{a}^{3}}{{a}^{2}-1}=\frac{27}{8}$,解得a=3,或a=$\frac{3+\sqrt{297}}{16}$(舍去).
1<a<1+$\sqrt{2}$時無解.
∴a=3.
點評 本題考查了橢圓的標準方程及其性質(zhì)、直線與橢圓相交弦長問題、兩點之間的距離公式、基本不等式的性質(zhì)、換元方法,考查了推理能力與計算能力,屬于難題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | y=2x-3 | B. | y=-2x+5 | C. | y=-x+3 | D. | y=x-1 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
課程 | 數(shù)學1 | 數(shù)學2 | 數(shù)學3 | 數(shù)學4 | 數(shù)學5 | 合計 |
頻數(shù) | 20 | 10 | 12 | a | b | 50 |
頻率 | 0.4 | 0.2 | p | 0.12 | q | 1 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 2018 | B. | 2017 | C. | 2016 | D. | 2015 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
日需求量n | 8 | 9 | 10 | 11 | 12 |
頻數(shù) | 9 | 11 | 15 | 10 | 5 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com