【題目】已知函數(shù)

(1)若方程有兩個小于2的不等實(shí)根,求實(shí)數(shù)a的取值范圍;

(2)若不等式對任意恒成立,求實(shí)數(shù)a的取值范圍;

(3)若函數(shù)在[0,2]上的最大值為4,求實(shí)數(shù)a的值.

【答案】(1)(2)(3)

【解析】試題分析:(1)根據(jù)二次函數(shù)的圖象與性質(zhì)得到關(guān)于的不等式組,解出即可;(2)問題轉(zhuǎn)化為的任意,根據(jù),求出的取值范圍即可;(3)求出函數(shù)的對稱軸,通過討論的范圍結(jié)合二次函數(shù)的性質(zhì),求出的范圍即可.

試題解析:(1)方程有兩個小于2的不等實(shí)根

;

(2)由對任意恒成立,則

;

(3)函數(shù)的對稱軸為x=a,則

當(dāng)a<1時,函數(shù)在[0,2]上的最大值為

,符合條件;

當(dāng)a≥1時,函數(shù)在[0,2]上的最大值為

,符合條件;

所以,所求實(shí)數(shù)a的值為

【方法點(diǎn)晴】本題主要考查不等式恒成立問題,屬于難題.不等式恒成立問題常見方法:① 分離參數(shù)恒成立(可)或恒成立(即可);② 數(shù)形結(jié)合( 圖象在 上方即可);③ 討論最值恒成立;④一元二次不等式任意恒成立可用判別式小于零解答.本題(2)是利用方法④ 求得的取值范圍.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)若函數(shù)上是減函數(shù),求實(shí)數(shù)的取值范圍;

(2)令,是否存在實(shí)數(shù),當(dāng)是自然常數(shù))時,函數(shù)的最小值是3,若存在,求出的值;若不存在,說明理由.

(3)當(dāng)時,證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 過點(diǎn),離心率為,分別為左右焦點(diǎn).

1)求橢圓的標(biāo)準(zhǔn)方程;

2)若上存在兩個點(diǎn),橢圓上有兩個點(diǎn)滿足三點(diǎn)共線,三點(diǎn)共線,且,求四邊形面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)

1若函數(shù)處有極值,求函數(shù)的最大值;

2①是否存在實(shí)數(shù),使得關(guān)于的不等式上恒成立?若存在,求出的取值范圍;若不存在,說明理由;

②證明:不等式

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】我國的高鐵技術(shù)發(fā)展迅速,鐵道部門計劃在兩城市之間開通高速列車,假設(shè)列車在試運(yùn)行期間,每天在兩個時間段內(nèi)各發(fā)一趟由城開往城的列車(兩車發(fā)車情況互不影響),城發(fā)車時間及概率如下表所示:

發(fā)車

時間

概率

若甲、乙兩位旅客打算從城到城,他們到達(dá)火車站的時間分別是周六的和周日的(只考慮候車時間,不考慮其他因素).

(1)設(shè)乙候車所需時間為隨機(jī)變量(單位:分鐘),求的分布列和數(shù)學(xué)期望;

(2)求甲、乙兩人候車時間相等的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,已知點(diǎn)為平面上的動點(diǎn),且過點(diǎn)的垂線,垂足為,滿足:

()求動點(diǎn)的軌跡的方程;

()在軌跡上求一點(diǎn),使得到直線的距離最短,并求出最短距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知矩形中,,分別在上,且,沿將四邊形折成四邊形,使點(diǎn)在平面上的射影在直線上,且.

(1)求證:平面

(2)求到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,過拋物線一點(diǎn),作兩條直線分別交拋物線于,,當(dāng)斜率存在且傾斜角互補(bǔ)時

值;

直線上的截距時,面積最大值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】命題實(shí)數(shù)滿足其中,命題實(shí)數(shù)滿足

1,且為真,求實(shí)數(shù)的取值范圍;

2的充分不必要條件,求實(shí)數(shù)的取值范圍

查看答案和解析>>

同步練習(xí)冊答案