【題目】已知矩形中,,分別在上,且,沿將四邊形折成四邊形,使點(diǎn)在平面上的射影在直線上,且.

(1)求證:平面;

(2)求到平面的距離.

【答案】(1)詳見解析(2)

【解析】

試題分析:(1)證明線面平行,一般利用線面平行判定定理,即從線線平行出發(fā)給予證明,而當(dāng)線線平行比較難找時(shí),可以先證面面平行,再轉(zhuǎn)化為線面平行:本題有兩組相交直線互相平行,,先得線面平行,平面平面,再得面面平行,平面平面,最后得線面平行平面(2)求點(diǎn)到直線距離,一般利用等體積法,即利用高求對(duì)應(yīng)點(diǎn)到面的距離:因?yàn)?/span>,所以

試題解析:(1)證明:,,又平面

平面

平面

同理又,平面

,平面平面

平面平面

(2)由題可知,,底面

,,

,

.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某工經(jīng)過市場調(diào)查,甲產(chǎn)品的日銷售量(單位:噸)與銷售價(jià)格(單位:萬元/噸)滿足關(guān)系式(其中為常數(shù)),已知銷售價(jià)格為萬元/噸時(shí),每天可售出該產(chǎn)品.

(1)求的值;

(2)若該產(chǎn)品的成本價(jià)格為萬元/噸,當(dāng)銷售價(jià)格為多少時(shí),該產(chǎn)品每天的利潤最大?并求出最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),設(shè),,其中,

1若函數(shù)在區(qū)間上單調(diào)遞增,求實(shí)數(shù)的取值范圍;

2,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)若方程有兩個(gè)小于2的不等實(shí)根,求實(shí)數(shù)a的取值范圍;

(2)若不等式對(duì)任意恒成立,求實(shí)數(shù)a的取值范圍;

(3)若函數(shù)在[0,2]上的最大值為4,求實(shí)數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)其中是實(shí)數(shù)設(shè)為該函數(shù)圖像上的兩點(diǎn),橫坐標(biāo)分別為,且

1求的單調(diào)區(qū)間和極值;

2,函數(shù)的圖像在點(diǎn)處的切線互相垂直,求的最大值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)、分別為橢圓的左、右兩個(gè)焦點(diǎn).
)若橢圓上的點(diǎn)、兩點(diǎn)的距離之和等于6,寫出橢圓的方程和焦點(diǎn)坐標(biāo);
)設(shè)點(diǎn)是(1)中所得橢圓上的動(dòng)點(diǎn),求線段的中點(diǎn)M的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左、右焦點(diǎn)分別為,橢圓上的點(diǎn)滿足,且的面積為

1求橢圓的方程;

2設(shè)橢圓的左、右頂點(diǎn)分別為、,過點(diǎn)的動(dòng)直線與橢圓相交于兩點(diǎn),直線與直線的交點(diǎn)為,證明:點(diǎn)總在直線

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】正方體的棱長為1,分別是棱的中點(diǎn),過直線的平面分別與棱交于,設(shè),,給出以下四個(gè)命題:

四邊形為平行四邊形;

若四邊形面積,,有最小值;

若四棱錐的體積,則為常函數(shù);

若多面體的體積,,則為單調(diào)函數(shù).

其中假命題為( )

A. ① ③ B. ② C. ③④ D. ④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形是矩形,,的中點(diǎn),交于點(diǎn),平面.

求證:

,求直線與平面所成角的正弦值.

查看答案和解析>>

同步練習(xí)冊答案