【題目】假設(shè)某設(shè)備的使用年限x(年)和所支出的維修費(fèi)用y(萬元)有如下的統(tǒng)計(jì)資料:
x | 2 | 3 | 4 | 5 | 6 |
y | 2.2 | 3.8 | 5.5 | 6.5 | 7.0 |
試求:(1)y與x之間的回歸方程;
(2)當(dāng)使用年限為10年時(shí),估計(jì)維修費(fèi)用是多少?
【答案】(1)(2)12.38萬元
【解析】(1)根據(jù)題表中數(shù)據(jù)作散點(diǎn)圖,如圖所示:
從散點(diǎn)圖可以看出,樣本點(diǎn)都集中分布在一條直線附近,因此y與x之間具有線性相關(guān)關(guān)系.利用題中數(shù)據(jù)得:
(2+3+4+5+6)=4,
=(2.2+3.8+5.5+6.5+7.0)=5,
2×2.2+3×3.8+4×5.5+5×6.5+6×7.0=112.3,
=22+32+42+52+62=90,
所以,
,
∴線性回歸方程為.
(2)當(dāng)x=10時(shí),=1.23×10+0.08=12.38(萬元),即當(dāng)使用10年時(shí),估計(jì)維修費(fèi)用是12.38萬元.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】x,y 滿足約束條件 ,若 z=y﹣ax 取得最大值的最優(yōu)解不唯一,則實(shí)數(shù) a 的值為( )
A. 或﹣1
B.2 或
C.2 或1
D.2 或﹣1
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=e﹣x﹣ .
(Ⅰ)證明:當(dāng)x∈[0,3]時(shí), .
(Ⅱ)證明:當(dāng)x∈[2,3]時(shí), .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)A是單位圓O和x軸正半軸的交點(diǎn),P,Q是圓O上兩點(diǎn),O為坐標(biāo)原點(diǎn),∠AOP= ,∠AOQ=α,α∈[0, ].
(1)若Q( , ),求cos(α﹣ )的值;
(2)設(shè)函數(shù)f(α)=sinα( ),求f(α)的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某廠生產(chǎn)一種產(chǎn)品的固定成本(即固定投入)為0.5萬元,但每生產(chǎn)一百件這樣的產(chǎn)品,需要增加可變成本(即另增加投入)0.25萬元. 市場對此產(chǎn)品的年需求量為500件,銷售的收入函數(shù)為= (單位:萬元),其中是產(chǎn)品售出的數(shù)量(單位:百件).
(1)該公司這種產(chǎn)品的年產(chǎn)量為百件,生產(chǎn)并銷售這種產(chǎn)品所得到的利潤為當(dāng)年產(chǎn)量的函數(shù),求;
(2)當(dāng)年產(chǎn)量是多少時(shí),工廠所得利潤最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱錐S﹣ABC中,SB⊥底面ABC,且SB=AB=2,BC= ,D、E分別是SA、SC的中點(diǎn).
(Ⅰ)求證:平面ACD⊥平面BCD;
(Ⅱ)求二面角S﹣BD﹣E的平面角的大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】李老師騎自行車上班,最初以某一速度勻速行進(jìn),中途由于自行車發(fā)生故障,停下修車耽誤了幾分鐘,為了按時(shí)到校,李老師加快了速度,仍保持勻速行進(jìn),結(jié)果準(zhǔn)時(shí)到校,在課堂上,李老師請學(xué)生畫出自行車行進(jìn)路程s(千米)與行進(jìn)時(shí)間x(秒)的函數(shù)圖象的示意圖,你認(rèn)為正確的是
A. B.
C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直三棱柱ABC﹣A1B1C1中,D是A1B1的中點(diǎn).
(1)求證:A1C∥平面BDC1;
(2)若AB⊥AC,且AB=AC= AA1 , 求二面角A﹣BD﹣C1的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),函數(shù).
⑴若的定義域?yàn)?/span>,求實(shí)數(shù)的取值范圍;
⑵當(dāng)時(shí),求函數(shù)的最小值;
⑶是否存在非負(fù)實(shí)數(shù)、,使得函數(shù)的定義域?yàn)?/span>,值域?yàn)?/span>,若存在,求出、的值;若不存在,則說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com