【題目】如圖,在三棱錐S﹣ABC中,SB⊥底面ABC,且SB=AB=2,BC= ,D、E分別是SA、SC的中點(diǎn).
(Ⅰ)求證:平面ACD⊥平面BCD;
(Ⅱ)求二面角S﹣BD﹣E的平面角的大。
【答案】證明:(Ⅰ)∵∠ABC= ,
∴BA⊥BC,
建立如圖所示的坐標(biāo)系,
則C(0, ,0),A(2,0,0),D(1,0,1),E(0, ,1),S(0,0,2),
則 =(﹣1,0,1), =(0, ,0),
=(1,0,1),
則 =(﹣1,0,1)(0, ,0)=0,
=(﹣1,0,1)(1,0,1)=﹣1+1=0,
則 ⊥ , ⊥ ,
即AD⊥BC,AD⊥BD,
∵BC∩BD=B,
∴AD⊥平面BCD;
∵AD平面BCD;
∴平面ACD⊥平面BCD;
(Ⅱ) =(0, ,1),
則設(shè)平面BDE的法向量 =(x,y,1),
則 ,即 ,
解得x=﹣1,y= ,
即 =(﹣1, ,1),
又平面SBD的法向量 =(0, ,0),
∴cos< , >= = ,
則< , >= ,即二面角S﹣BD﹣E的平面角的大小為 .
【解析】(Ⅰ)根據(jù)面面垂直的判定定理證明AD⊥平面BCD即可證明平面ACD⊥平面BCD.(Ⅱ)建立空間直角坐標(biāo)系,利用向量法即可求二面角S﹣BD﹣E的余弦值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】直線l1過點(diǎn)A(0,1),l2過點(diǎn)B(5,0),如果l1∥l2,且l1與l2的距離為5,求l1、l2的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線l:mx﹣y﹣m+2=0與圓C:x2+y2+4x﹣4=0交于A,B兩點(diǎn),若△ABC為直角三角形,則m= .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)為二次函數(shù),且f(x-1)+f(x)=2x2+4.
(1)求f(x)的解析式;
(2)當(dāng)x∈[t,t+2],t∈R時(shí),求函數(shù)f(x)的最小值(用t表示).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】假設(shè)某設(shè)備的使用年限x(年)和所支出的維修費(fèi)用y(萬元)有如下的統(tǒng)計(jì)資料:
x | 2 | 3 | 4 | 5 | 6 |
y | 2.2 | 3.8 | 5.5 | 6.5 | 7.0 |
試求:(1)y與x之間的回歸方程;
(2)當(dāng)使用年限為10年時(shí),估計(jì)維修費(fèi)用是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x2+alnx(a為實(shí)常數(shù))
(1)若a=﹣2,求證:函數(shù)f(x)在(1,+∞)上是增函數(shù);
(2)求函數(shù)f(x)在[1,e]上的最小值及相應(yīng)的x值;
(3)若存在x∈[1,e],使得f(x)≤(a+2)x成立,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在某校組織的一次籃球定點(diǎn)投籃訓(xùn)練中,規(guī)定每人最多投3次,在A處每投進(jìn)一球得3分,在B處每投進(jìn)一球得2分;如果前兩次得分之和超過3分即停止投籃,否則投第三次,某同學(xué)在A處的命中率為0.25,在B處的命中率為0.8,該同學(xué)選擇先在A處投一球,以后都在B處投,用X表示該同學(xué)投籃訓(xùn)練結(jié)束后所得的總分.
(1)求該同學(xué)投籃3次的概率;
(2)求隨機(jī)變量X的數(shù)學(xué)期望E(X).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】要建造一個(gè)容積為1 600立方米,深為4米的長(zhǎng)方體無蓋蓄水池,池壁的造價(jià)為每平方米200元,池底的造價(jià)為每平方米100元.
(1)把總造價(jià)y元表示為池底的一邊長(zhǎng)x米的函數(shù);
(2)由于場(chǎng)地原因,蓄水池的一邊長(zhǎng)不能超過20米,問蓄水池的這個(gè)底邊長(zhǎng)為多少時(shí)總造價(jià)最低?總造價(jià)最低是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線l1過點(diǎn)A(0,1),l2過點(diǎn)B(5,0),如果l1∥l2,且l1與l2間的距離為5,求l1、l2的方程.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com