【題目】已知橢圓:的離心率為,右焦點(diǎn)到直線的距離為.
(1)求橢圓的方程;
(2)過(guò)點(diǎn)作與坐標(biāo)軸不垂直的直線與橢圓交于,兩點(diǎn),在軸上是否存在點(diǎn),使得為正三角形,若存在,求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
【答案】(1).(2)在軸上是存在點(diǎn),坐標(biāo)為,
【解析】
(1)因?yàn)闄E圓:的離心率為,可得,右焦點(diǎn)到直線的距離為,故,即可求得答案;
(2)設(shè)線段的中點(diǎn),若是正三角形,且,結(jié)合已知,即可求得答案.
(1)橢圓:的離心率為
,可得
故
右焦點(diǎn)到直線的距離為.
①當(dāng)時(shí),將代入
可得
整理可得:
即
解得:(舍去)或
由,可得,即
根據(jù)
可得:
②當(dāng)時(shí),將代入
可得
整理可得:
方程無(wú)解
(2)過(guò)點(diǎn)作與坐標(biāo)軸不垂直的直線
設(shè)直線的方程為
聯(lián)立直線的方程和橢圓方程可得:,消掉
可得:
根據(jù)韋達(dá)定理可得:
設(shè)線段的中點(diǎn),
則,
是正三角形
且
根據(jù),可得
由可得:
可得:,解得:
設(shè),將其代入
可得
可得
故在軸上是存在點(diǎn),使得為正三角形,坐標(biāo)為,
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),.
(1)當(dāng)時(shí),求的單調(diào)區(qū)間;
(2)若有兩個(gè)零點(diǎn),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)是定義在R上的奇函數(shù),當(dāng)時(shí),,給出下列命題:
①當(dāng)時(shí),;
②函數(shù)有2個(gè)零點(diǎn);
③的解集為;
④,,都有.
其中真命題的個(gè)數(shù)為( )
A.4B.3C.2D.1
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知△ABC的內(nèi)角A,B,C所對(duì)邊分別為a、b、c,且2acosC=2b-c.
(1)求角A的大;
(2)若AB=3,AC邊上的中線SD的長(zhǎng)為,求△ABC的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)若曲線在點(diǎn)處的切線方程為,求的值;
(2)當(dāng)時(shí),求證:;
(3)設(shè)函數(shù),其中為實(shí)常數(shù),試討論函數(shù)的零點(diǎn)個(gè)數(shù),并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的左右焦點(diǎn)分別為和,由4個(gè)點(diǎn)、、和組成了一個(gè)高為,面積為的等腰梯形.
(1)求橢圓的方程;
(2)過(guò)點(diǎn)的直線和橢圓交于兩點(diǎn)、,求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】人們隨著生活水平的提高,健康意識(shí)逐步加強(qiáng),健身開始走進(jìn)人們生活,在健身方面投入越來(lái)越多,為了調(diào)查參與健身的年輕人一年健身的花費(fèi)情況,研究人員在地區(qū)隨機(jī)抽取了參加健身的青年男性、女性各50名,將其花費(fèi)統(tǒng)計(jì)情況如下表所示:
分組(花費(fèi)) | 頻數(shù) |
6 | |
22 | |
25 | |
35 | |
8 | |
4 |
男性 | 女性 | 合計(jì) | |
健身花費(fèi)不超過(guò)2400元 | 23 | ||
健身花費(fèi)超過(guò)2400元 | 20 | ||
合計(jì) |
(1)完善二聯(lián)表中的數(shù)據(jù);
(2)根據(jù)表中的數(shù)據(jù)情況,判斷是否有99%的把握認(rèn)為健身的花費(fèi)超過(guò)2400元與性別有關(guān);
(3)求這100名被調(diào)查者一年健身的平均花費(fèi)(同一組數(shù)據(jù)用該區(qū)間的中點(diǎn)值代替).
附:
P(K2≥k) | 0.10 | 0.05 | 0.025 | 0.01 |
k | 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù),其中為自然對(duì)數(shù)的底數(shù).
(1)當(dāng)時(shí),判斷函數(shù)的單調(diào)性;
(2)若直線是函數(shù)的切線,求實(shí)數(shù)的值;
(3)當(dāng)時(shí),證明:.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com