14.不等式$\frac{x-1}{x}$>2的解集是(  )
A.(-∞,-1)∪(0,+∞)B.(-∞,-1)C.(-1,+∞)D.(-1,0)

分析 移項、通分,即可求出不等式$\frac{x-1}{x}$>2的解集.

解答 解:由題意,可得$\frac{-x-1}{x}$>0,
即有x(x+1)<0,
∴-1<x<0,
∴不等式$\frac{x-1}{x}$>2的解集是(-1,0),
故選:D.

點評 本題考查不等式$\frac{x-1}{x}$>2的解集,考查學(xué)生的計算能力,正確轉(zhuǎn)化是關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.函數(shù)f(x)=-2x3+ax+3在(1,+∞)上單調(diào)遞減,則實數(shù)a的取值范圍是( 。
A.[6,+∞)B.(6,+∞)C.(-∞,6]D.(-∞,6)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.某三棱錐的三視圖如圖所示,則該三棱錐的四個面中,面積最大的面的面積是$2\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.某班50人的一次競賽成績的頻數(shù)分布如下:[60,70):3人,[70,80):16人,[80,90):24人,[90,100]:7人,利用組中可估計本次比賽該班的平均分為82.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知變量x與y線性相關(guān),且滿足如下數(shù)據(jù)表:
x012m
y126n
若y與x的回歸直線必經(jīng)過點($\frac{3}{2}$,4),則m+n=10.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.在平面直角坐標(biāo)系xOy中,已知向量$\overrightarrow{a}$=(2,0),$\overrightarrow$=(0,1).設(shè)向量$\overrightarrow{x}=\overrightarrow{a}$+(1+cosθ)$\overrightarrow$,$\overrightarrow{y}$=-k$\overrightarrow{a}$+sin2θ•$\overrightarrow$
(1)若$\overrightarrow{x}$∥$\overrightarrow{y}$,且θ=$\frac{π}{3}$求實數(shù)k的值;
(2)若$\overrightarrow{x}$⊥$\overrightarrow{y}$,且θ=$\frac{2π}{3}$,求實數(shù)k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.甲、乙兩位同學(xué)在高一年級的5次考試中,數(shù)學(xué)成績統(tǒng)計如莖葉圖所示,若甲、乙兩人的平均成績分別是$\overline{x_1},\overline{x_2}$,則下列敘述正確的是(  )
A.$\overline{x_1}$>$\overline{x_2}$,乙比甲成績穩(wěn)定B.$\overline{x_1}$>$\overline{x_2}$,甲比乙成績穩(wěn)定
C.$\overline{x_1}$<$\overline{x_2}$,乙比甲成績穩(wěn)定D.$\overline{x_1}$<$\overline{x_2}$,甲比乙成績穩(wěn)定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.如圖,測量河對岸的塔高AB時,可以選與塔底B在同一水平面內(nèi)的兩個觀測點C與D,測得∠BCD=75°,∠BDC=45°,CD=30米,并在C測得塔頂A的仰角為60°,則塔的高度AB為(  )
A.30$\sqrt{2}$米B.30$\sqrt{6}$米C.15($\sqrt{3}$+1)米D.10$\sqrt{6}$米

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知$\overrightarrow{a}$=(1,2),$\overrightarrow$=(x,-1),且滿足($\overrightarrow{a}$+$\overrightarrow$)∥($\overrightarrow{a}$-$\overrightarrow$),則x的值為( 。
A.-$\frac{1}{2}$B.2C.$\frac{1}{2}$D.-2

查看答案和解析>>

同步練習(xí)冊答案