5.某三棱錐的三視圖如圖所示,則該三棱錐的四個(gè)面中,面積最大的面的面積是$2\sqrt{3}$.

分析 根據(jù)幾何體的三視圖知該幾何體是三棱錐,由三視圖求出幾何體的棱長、并判斷出線面的位置關(guān)系,由勾股定理、余弦定理、三角形的面積公式求出各個(gè)面的面積,即可得幾何體的各面中面積最大的面的面積.

解答 解:根據(jù)幾何體的三視圖知,該幾何體是三棱錐P-ABC,
直觀圖如圖所示:由圖得,PA⊥平面ABC,
${S_{△ABC}}=\frac{1}{2}×2×2×sin{120^0}=\frac{1}{2}×2×2×\frac{{\sqrt{3}}}{2}=\sqrt{3}$,${S_{△PAB}}=\frac{1}{2}×2×2=2$,$PB=2\sqrt{2}$,$AC=2\sqrt{3}$,
則${S_{△PAC}}=\frac{1}{2}×2×2\sqrt{3}=2\sqrt{3}$,
在△PBC中,$PC=\sqrt{P{A^2}+A{C^2}}=\sqrt{{2^2}+{{(2\sqrt{3})}^2}}=4$,
由余弦定理得:$cos∠PBC=\frac{{{2^2}+{{(2\sqrt{2})}^2}-{4^2}}}{{2×2×2\sqrt{2}}}=-\frac{{\sqrt{2}}}{4}$,
則$sin∠PBC=\frac{{\sqrt{14}}}{4}$,所以${S_{△PAC}}=\frac{1}{2}×2×2\sqrt{2}×\frac{{\sqrt{14}}}{4}=\sqrt{7}$,
所以三棱錐中,面積最大的面是△PAC,其面積為$2\sqrt{3}$,
故答案為:$2\sqrt{3}$.

點(diǎn)評(píng) 本題考查由三視圖求幾何體的表面積,勾股定理、余弦定理、三角形的面積公式的應(yīng)用,由三視圖正確復(fù)原幾何體是解題的關(guān)鍵,考查空間想象能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知sinα=$\frac{5}{13}$,0<α<$\frac{π}{2}$.
(1)求sin2α的值;
(2)若cos(α-β)=$\frac{4}{5}$,0<α<β<$\frac{π}{2}$,求cosβ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.(1+x)8的展開式中x6的系數(shù)是28.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.一個(gè)幾何體的三視圖如圖所示,其中主(正)視圖是邊長為2的正三角形,俯視圖是正方形,那么該幾何體的側(cè)面積是( 。
A.4$\sqrt{3}$+4B.4$\sqrt{3}$C.8D.12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.如圖所示,網(wǎng)格紙表示邊長為1的正方形,粗實(shí)線畫出的是某幾何體的三視圖,則該幾何體的表面積為( 。
A.6$\sqrt{10}$+3$\sqrt{5}$+15B.6$\sqrt{10}$+3$\sqrt{5}$+14C.6$\sqrt{10}$+3$\sqrt{5}$+15D.4$\sqrt{10}$+3$\sqrt{5}$+15

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知函數(shù)g(x)=$\sqrt{2}$cos(2x+$\frac{π}{4}$+2m)+2的圖象關(guān)于點(diǎn)(0,2)對(duì)稱,求m的最小正值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知函數(shù)y=3x,x∈[0,3],試指出這個(gè)函數(shù)表達(dá)式中的自變量、因變量和函數(shù)的定義域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.不等式$\frac{x-1}{x}$>2的解集是( 。
A.(-∞,-1)∪(0,+∞)B.(-∞,-1)C.(-1,+∞)D.(-1,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0),設(shè)F1,F(xiàn)2為其左、右焦點(diǎn),P在雙曲線右支上,半徑為b+$\frac{a}$的圓M為△PF1F2的內(nèi)切圓,若點(diǎn)M到直線y=$\frac{a}$x的距離為$\frac{1}{2}$,則雙曲線的離心率為( 。
A.$\frac{3\sqrt{6}}{6}$B.$\frac{3}{2}$C.$\frac{\sqrt{6}}{2}$D.$\frac{2\sqrt{3}}{3}$

查看答案和解析>>

同步練習(xí)冊(cè)答案