【題目】在直角坐標(biāo)系xOy中,直線l過點M(3,4),其傾斜角為45°,圓C的參數(shù)方程為 .再以原點為極點,以x正半軸為極軸建立極坐標(biāo)系,并使得它與直角坐標(biāo)系xoy有相同的長度單位.
(1)求圓C的極坐標(biāo)方程;
(2)設(shè)圓C與直線l交于點A、B,求|MA||MB|的值.
【答案】
(1)解:消去參數(shù)可得圓的直角坐標(biāo)方程式為x2+(y﹣2)2=4,
由極坐標(biāo)與直角坐標(biāo)互化公式得(ρcosθ)2+(ρsinθ﹣2)2=4化簡得ρ=4sinθ
(2)解:直線l的參數(shù)方程 ,(t為參數(shù)).
即 代入圓方程得: +9=0,
設(shè)A、B對應(yīng)的參數(shù)分別為t1、t2,則 ,t1t2=9,
于是|MA||MB|=|t1||t2|=|t1t2|=9
【解析】(1)利用cos2θ+sin2θ=1消去參數(shù)可得圓的直角坐標(biāo)方程式,由極坐標(biāo)與直角坐標(biāo)互化公式代入化簡即可得出.(2)直線l的參數(shù)方程 ,(t為參數(shù)),代入圓方程得: +9=0,利用|MA||MB|=|t1||t2|=|t1t2|即可得出.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】秦九韶是我國南宋時期的數(shù)學(xué)家,普州(現(xiàn)四川省安岳縣)人,他在所著的《數(shù)書九章》中提出的多項式求值的秦九韶算法,至今仍是比較先進的算法,如圖所示的程序框圖給出了利用秦九韶算法求某多項式值的一個實例,若輸入x的值為2,則輸出v的值為( )
A.210﹣1
B.210
C.310﹣1
D.310
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某同學(xué)在研究學(xué)習(xí)中,收集到某制藥廠今年5個月甲膠囊生產(chǎn)產(chǎn)量(單位:萬盒)的數(shù)據(jù)如下表所示:
(月份) | 1 | 2 | 3 | 4 | 5 |
(萬盒) | 5 | 5 | 6 | 6 | 8 |
若線性相關(guān),線性回歸方程為,則以下為真命題的是( )
A. 每增加1個單位長度,則一定增加0.7個單位長度
B. 每增加1個單位長度,則必減少0.7個單位長度
C. 當(dāng)時,的預(yù)測值為8.1萬盒
D. 線性回歸直線經(jīng)過點
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】從一批蘋果中,隨機抽取50個,其重量(單位:克)的頻數(shù)分布表如下:
分組(重量) | ||||
頻數(shù)(個) | 5 | 10 | 20 | 15 |
(1) 根據(jù)頻數(shù)分布表計算蘋果的重量在的頻率;
(2) 用分層抽樣的方法從重量在和的蘋果中共抽取4個,其中重量在的有幾個?
(3) 在(2)中抽出的4個蘋果中,任取2個,求重量在和中各有1個的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)().
(1)當(dāng)時,求曲線在點處的切線方程;
(2)求函數(shù)的單調(diào)區(qū)間;
(3)若對(為自然對數(shù)的底數(shù)),恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}是各項均為正整數(shù)的等差數(shù)列,公差d∈N* , 且{an}中任意兩項之和也是該數(shù)列中的一項.
(1)若a1=4,則d的取值集合為;
(2)若a1=2m(m∈N*),則d的所有可能取值的和為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知遞減等差數(shù)列{an}滿足:a1=2,a2a3=40. (Ⅰ)求數(shù)列{an}的通項公式及前n項和Sn;
(Ⅱ)若遞減等比數(shù)列{bn}滿足:b2=a2 , b4=a4 , 求數(shù)列{bn}的通項公式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱柱ABC-中,平面ABC,D,E,F,G分別為,AC,,的中點,AB=BC=,AC==2.
(Ⅰ)求證:AC⊥平面BEF;
(Ⅱ)求二面角B-CD-C1的余弦值;
(Ⅲ)證明:直線FG與平面BCD相交.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知等比數(shù)列{an}滿足an+1+an=92n﹣1 , n∈N* . (Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)設(shè)bn=nan , 數(shù)列{bn}的前n項和為Sn , 若不等式Sn>kan﹣1對一切n∈N*恒成立,求實數(shù)k的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com