【題目】已知函數(shù),有如下性質(zhì):如果常數(shù),那么該函數(shù)在上是減函數(shù),在上是增函數(shù).

1)已知,,利用上述性質(zhì),求的單調(diào)區(qū)間和值域;

2)對于(1)中的函數(shù)和函數(shù),若對任意的,總存在使得成立,求實(shí)數(shù)的值.

【答案】1的單調(diào)遞減區(qū)間為,的單調(diào)遞增區(qū)間為;;(23.

【解析】

1)先將函數(shù)變形為,根據(jù)題目已知條件可得函數(shù)的單調(diào)區(qū)間和值域;

2)由求得函數(shù)的值域,由已知得的值域是的值域的子集,建立關(guān)于的不等式,解之可得實(shí)數(shù)的值.

1,

設(shè),,由,可得

當(dāng)時(shí),即時(shí),單調(diào)遞減,

函數(shù)的單調(diào)遞減區(qū)間為,

當(dāng)時(shí),即時(shí),單調(diào)遞增,

函數(shù)的單調(diào)遞增區(qū)間為,

,,,得的值域?yàn)?/span>.

2為減函數(shù),

故當(dāng)時(shí),,

由題知的值域是的值域的子集,

,解得.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知甲、乙、丙、丁、戊、己6.(以下問題用數(shù)字作答)

1)邀請這6人去參加一項(xiàng)活動,必須有人去,去幾人自行決定,共有多少種不同的安排方法?

2)將這6人作為輔導(dǎo)員全部安排到3項(xiàng)不同的活動中,求每項(xiàng)活動至少安排1名輔導(dǎo)員的方法總數(shù)是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某廠家擬在2020年舉行促銷活動,經(jīng)調(diào)查測算,某產(chǎn)品的年銷售量(即該廠的年產(chǎn)量)萬件與年促銷費(fèi)用萬元,滿足為常數(shù)),如果不搞促銷活動,則該產(chǎn)品的年銷售量只能是1萬件,已知2020年生產(chǎn)該產(chǎn)品的固定投入為8萬元,每生產(chǎn)1萬件,該產(chǎn)品需要再投入16萬元,廠家將每件產(chǎn)品的銷售價(jià)格定為每件產(chǎn)品年平均成本的1.5倍(產(chǎn)品成本包括固定投入和再投入兩部分資金).

1)將2020年該產(chǎn)品的利潤(萬元)表示為年促銷費(fèi)用(萬元)的函數(shù);

2)該廠家2020年的促銷費(fèi)用投入多少萬元時(shí),廠家的利潤最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】《九章算術(shù)》第八章方程問題八:今有賣牛二、羊五,以買十三豕,有余錢一千。賣牛三、豕三,以買九羊,錢適足.賣羊六、豕八,以買五牛,錢不足六百.問牛、羊、豕各幾何?如果賣掉2頭牛和5只羊,可買13口豬,還余1000錢;賣掉3頭牛和3口豬的錢恰好可買9只羊;而賣掉6只羊和8口豬,去買5頭牛,還少600.問牛、羊、豬的價(jià)格各是多少”.按照題意,可解出牛______錢、羊______錢、豬______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知四棱錐中,底面為平行四邊形,點(diǎn)、、分別在、.

1)若,求證:平面平面;

2)若滿足,則點(diǎn)滿足什么條件時(shí),.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某次文藝匯演,要將A、B、C、D、E、F這六個(gè)不同節(jié)目編排成節(jié)目單,如下表:

如果A、B兩個(gè)節(jié)目要相鄰,且都不排在第3號位置,則節(jié)目單上不同的排序方式有(  。┓N

A. 192 B. 144 C. 96 D. 72

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)討論函數(shù)的零點(diǎn)個(gè)數(shù);

(2)已知,證明:當(dāng)時(shí),.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)當(dāng)時(shí),

①若曲線與直線相切,求c的值;

②若曲線與直線有公共點(diǎn),求c的取值范圍.

(2)當(dāng)時(shí),不等式對于任意正實(shí)數(shù)x恒成立,當(dāng)c取得最大值時(shí),求a,b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知三角形兩邊長分別為,第三邊上的中線長為,則三角形的外接圓半徑為________.

查看答案和解析>>

同步練習(xí)冊答案