14.△ABC中,角A.B,C的對(duì)邊分別為3,4,5,點(diǎn)H位于A(yíng)B邊上,沿CH折疊△ABC,若折疊過(guò)程中始終有AB⊥CH,則三棱錐H-ABC的體積的最大值為$\frac{288}{125}$.

分析 由條件可知CH⊥AB,故當(dāng)AH⊥BH時(shí),三棱錐的體積最大,利用三角形相似求出各邊長(zhǎng)即可得出最大體積.

解答 解:∵折疊過(guò)程中始終有AB⊥CH,
∴CH⊥平面ABH,
∴CH⊥AB.
∴當(dāng)AH⊥BH時(shí),三棱錐H-ABC的體積最大.
∵BC=3,AC=4,AB=5,
∴CH=$\frac{12}{5}$,BH=$\frac{9}{5}$,AH=$\frac{16}{5}$.
∴三棱錐H-ABC的最大體積為$\frac{1}{3}$×$\frac{1}{2}$×$\frac{9}{5}$×$\frac{12}{5}$×$\frac{16}{5}$=$\frac{288}{125}$.
故答案為:$\frac{128}{125}$.

點(diǎn)評(píng) 本題考查了棱錐的體積計(jì)算,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.已知圓C:(x+2)2+y2=4,直線(xiàn)l:kx-y-2k=0(k∈R),若直線(xiàn)l與圓C恒有公共點(diǎn),則實(shí)數(shù)k的最小值是-$\frac{\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知$\overrightarrow{a}$=(3,4),$\overrightarrow$=(2,k).
(1)若($\overrightarrow{a}$+2$\overrightarrow$)∥($\overrightarrow{a}$-$\overrightarrow$),求k的值.
(2)若($\overrightarrow{a}$+$\overrightarrow$)⊥($\overrightarrow{a}$-$\overrightarrow$),求k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.下列結(jié)論中正確的有(2)
(1)若α,β是第一象限角,且α<β,則sinα<sinβ;
(2)函數(shù)y=sin(πx-$\frac{π}{2}$)是偶函數(shù);
(3)函數(shù)y=sin(2x+$\frac{π}{6}$)的一個(gè)對(duì)稱(chēng)中心是($\frac{π}{6}$,0);
(4)函數(shù)y=sin(2x+$\frac{π}{3}$)在[0,$\frac{π}{6}$]上是增函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知圓x2+y2=4上一定點(diǎn)A(2,0),B(1,1)為圓內(nèi)一點(diǎn),P,Q為圓上的動(dòng)點(diǎn),求線(xiàn)段AP中點(diǎn)的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.點(diǎn)P(4,m)在以點(diǎn)F為焦點(diǎn)的拋物線(xiàn)$\left\{{\begin{array}{l}{x=4{t^2}}\\{y=4t}\end{array}}\right.$(t為參數(shù))上,則|PF|等于( 。
A.2B.3C.4D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.若沿一個(gè)正方體三個(gè)面的對(duì)角線(xiàn)截得的幾何體如圖所示,則下列說(shuō)法正確的是( 。
A.正視圖與側(cè)視圖一樣B.正視圖與俯視圖一樣
C.側(cè)視圖與俯視圖一樣D.正視圖、側(cè)視圖、俯視圖都不一樣

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知二次函數(shù)f(x)滿(mǎn)足f(x+2)=f(2-x),且f(x)=0的兩根平方和為10,圖象過(guò)點(diǎn)(0,3).
(1)求f(5)的值;
(2)若函數(shù)f(x)在定義域[a,+∞)上f(x)≥8恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.如圖,四邊形ABCD是邊長(zhǎng)為2的菱形,∠ABC=60°,E,F(xiàn)分別為DC,AB的中點(diǎn),將△DAE沿AE折起,使得∠DEC=120°.
(Ⅰ)求證:平面DCF⊥平面DCE;
(Ⅱ)求點(diǎn)B到平面DCF的距離.

查看答案和解析>>

同步練習(xí)冊(cè)答案