【題目】某學校為了了解該校學生對于某項運動的愛好是否與性別有關,通過隨機抽查110名學生,得到如下的列聯(lián)表:

喜歡該項運動

不喜歡該項運動

總計

40

20

60

20

30

50

總計

60

50

110

由公式,算得

附表:

0.025

0.01

0.005

5.024

6.635

7.879

參照附表,以下結論正確的是( )

A. 在犯錯誤的概率不超過0.1%的前提下,認為“愛好該項運動與性別有關”

B. 在犯錯語的概率不超過0.1%的前提下,認為“愛好該項運動與性別有關”

C. 有99%以上的把握認為“愛好該項運動與性別無關”

D. 有99%以上的把握認為“愛好該項運動與性別有關”

【答案】D

【解析】由列聯(lián)表知本題的觀測值, 這個結論有的機會出錯,即有以上的把握認為“愛好該項運動與性別無關”,故選D.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在矩形ABCD中,以A為圓心,AD為半徑的圓交ACABM,E.CE的延長線交⊙AFCM=2,AB=4.

(1)求⊙A的半徑;

(2)求CE的長和△AFC的面積

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知f(x)為定義在R上的奇函數(shù),當x≥0,f(x)=log3(x+3)﹣a,則不等式|f(x)|<1的解集為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知p: ,q:x2﹣2x+1﹣m2≤0(m>0).若¬p是¬q的充分不必要條件,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】函數(shù)f(x)=sin(ωx+φ)(ω>0,|φ|< )的最小正周期是π,若其圖象向右平移 個單位后得到的函數(shù)為奇函數(shù),則函數(shù)f(x)的圖象(
A.關于點 對稱
B.關于x= 對稱
C.關于點( ,0)對稱
D.關于x= 對稱

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】蘭州一中在世界讀書日期間開展了書香校園系列讀書教育活動。為了解本校學生課外閱讀情況,學校隨機抽取了100名學生對其課外閱讀時間進行調查。下面是根據(jù)調查結果繪制的學生日均課外閱讀時間(單位:分鐘)的頻率分布直方圖,且將日均課外閱讀時間不低于60分鐘的學生稱為讀書迷,低于60分鐘的學生稱為非讀書迷

非讀書迷

讀書迷

合計

15

45

(1)根據(jù)已知條件完成下面2×2列聯(lián)表,并據(jù)此判斷是否有99%的把握認為“讀書迷”與性別有關?

2利用分層抽樣從這100名學生的讀書迷”中抽取8名進行集訓,從中選派2名參加蘭州市讀書知識比賽,求至少有一名男生參加比賽的概率。

附:

0.100

0.050

0.025

0.010

0.001

k0

2.706

3.841

5.024

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,平面平面,是等邊三角形,已知

(1)設上的一點,證明:平面平面;

(2)求四棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設l,m是兩條不同直線,α是一個平面,則下列四個命題正確的是(
A.若l⊥m,mα,則l⊥α
B.若l∥α,m∥α,則l∥m
C.若l∥α,mα,則l∥m
D.若l⊥α,l∥m,則m⊥α

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在多面體ABCDEF中,四邊形ABCD是正方形,EF∥AB,EF⊥FB,AB=2EF,∠BFC=90°,BF=FC,H為BC的中點.

(1)求證:FH∥平面EDB;
(2)求證:AC⊥平面EDB;
(3)解:求二面角B﹣DE﹣C的大。

查看答案和解析>>

同步練習冊答案