20.設(shè)△ABC的內(nèi)角A,B,C所對的邊分別為a,b,c,若a2+b2-c2+ab=0,則角C=( 。
A.$\frac{π}{6}$B.$\frac{5π}{6}$C.$\frac{2π}{3}$D.$\frac{π}{3}$

分析 利用余弦定理表示出cosC,把已知等式變形后代入求出cosC的值,即可確定出C的度數(shù).

解答 解:∵△ABC中,a2+b2-c2+ab=0,即a2+b2-c2=-ab,
∴cosC=$\frac{{a}^{2}+^{2}-{c}^{2}}{2ab}$=-$\frac{1}{2}$,
則∠C=120°.
故選:C.

點(diǎn)評 此題考查了余弦定理,以及特殊角的三角函數(shù)值,熟練掌握余弦定理是解本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.三棱錐A-BCD中,E是BC的中點(diǎn),AB=AD,BD⊥DC,求證:AE⊥BD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.在△ABC中,CD為AB邊上的高,|$\overrightarrow{CD}$|=1,$\overrightarrow{BD}$•$\overrightarrow{DA}$=1,則$\overrightarrow{CA}$•$\overrightarrow{CB}$=( 。
A.0B.1C.-1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知函數(shù)f(x)=x+$\frac{m}{x}$,且此函數(shù)圖象過(1,5)
(1)求實(shí)數(shù)m的值;
(2)判斷函數(shù)f(x)在區(qū)間(0,+∞)上的單調(diào)性(不必證明);
(3)若x2+4≥ax在(0,+∞)上恒成立,求參數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知f(x)是定義在R上的偶函數(shù),且對任意x1,x2∈[0,+∞),x1≠x2,都有(x1-x2)(f(x1)-f(x2))<0,則( 。
A.f(3)<f(-2)<f(1)B.f(1)<f(-2)<f(3)C.f(-2)<f(1)<f(3)D.f(3)<f(-2)<f(1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.函數(shù)y=1+2x在區(qū)間x∈[0,1]上的值域?yàn)椋ā 。?table class="qanwser">A.[1,+∞)B.(-∞,2]C.[2,3]D.[1,3]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知全集U=R,A={x|-2<x<0},B={x|-1≤x≤1},求:
(1)A∪B;
(2)A∩(∁UB).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.袋中有形狀、大小都相同的4只球,其中1只白球,1只紅球,2只黃球.從中一次隨機(jī)摸出2只球,則這2只球顏色為一紅一黃的概率為$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知△ABC內(nèi)接于以圓點(diǎn)O為圓心半徑為1的圓,若3$\overrightarrow{OA}$+4$\overrightarrow{OB}$=-5$\overrightarrow{OC}$,則∠ACB=( 。
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{π}{2}$D.$\frac{3π}{4}$

查看答案和解析>>

同步練習(xí)冊答案