8.若直線ax+2y-2=0與直線x+(a+1)y+1=0垂直,則a=$-\frac{2}{3}$.

分析 對a分類討論,利用兩條直線相互垂直的充要條件即可得出.

解答 解:a=-1時,兩條直線不垂直.
a≠-1時,由兩條直線垂直可得:$-\frac{a}{2}×(-\frac{1}{a+1})$=-1,解得a=$-\frac{2}{3}$.
故答案為:-$\frac{2}{3}$.

點評 本題考查了直線垂直的充要條件,考查了分類討論方法、推理能力與計算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知二項式${({x+\frac{1}{x}})^n}$的展開式中各項的系數(shù)和為256.
(Ⅰ)求n;
(Ⅱ)求展開式中的常數(shù)項.(結(jié)果用數(shù)字作答)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.在四棱錐P-ABCD中,底面ABCD是邊長為2的菱形,∠BAD=60°,PA⊥面ABCD,PA=$\sqrt{3}$,E,F(xiàn)分別為BC,PA的中點.
(1)求證:BF∥面PDE
(2)求點C到面PDE的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.(1)已知在平面直角坐標(biāo)系中,直線l經(jīng)過點P(1,1),傾斜角α=$\frac{π}{6}$,寫出直線l的參數(shù)方程.
(2)極坐標(biāo)系中,已知圓ρ=10cos$({\frac{π}{3}-θ})$,將它化為直角坐標(biāo)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.設(shè)全集U={x|x<4,x∈N},A={0,1,2},B={2,3},則B∪(∁UA)等于( 。
A.B.{3}C.{2,3}D.{0,1,2,3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.在平面直角坐標(biāo)中,有不共線的三點A,B,C,已知AB,AC所在直線的斜率分別為k1,k2,則“k1k2>-1”是“∠BAC為銳角”的( 。
A.充分而不必要條件B.必要而不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.下列三角函數(shù)值大小比較正確的是( 。
A.sin$\frac{19π}{8}$<cos$\frac{14π}{9}$B.sin(-$\frac{54π}{7}$)<sin(-$\frac{63π}{8}$)
C.tan(-$\frac{13π}{4}$)>tan(-$\frac{17π}{5}$)D.tan138°>tan143°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.雙曲線$\frac{y^2}{9}-\frac{x^2}{4}=1$的漸近線方程為( 。
A.$y=±\frac{9}{4}x$B.$y=±\frac{4}{9}x$C.$y=±\frac{2}{3}x$D.$y=±\frac{3}{2}x$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.如圖,正三棱柱ABC-A1B1C1的底面邊長是2,側(cè)棱長是$\sqrt{3}$,D是AC的中點.
(Ⅰ)求證:B1C∥平面A1BD;
(Ⅱ)求二面角A-A1B-D的余弦值.

查看答案和解析>>

同步練習(xí)冊答案